Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Solution proposal to the unit commitment problem incorporating manifold uncertainties

The widespread uncertainties have made the interaction of renewable energy sources and power grid more complicated and difficult to handle. This study proposes a solution proposal to the unit commitment problem incorporating multiple uncertainties, consisting of probability, possibility, and interval measures. To handle the manifold uncertainties in a focused and efficient manner, the evidence theory (ET) is applied to fuse these uncertain variables into Dempster–Shafer (DS) structure. Furthermore, the uncertainty of power loss is considered and modelled by applying the ET and the extended affine arithmetic framework. Regarding the highly non-linear mix-discrete constrained multivariable characteristic of the established optimisation model, an enhanced binary grey wolf optimiser algorithm is introduced, in which some key issues such as how to compare the objective function values with DS structure, how to deal with the inequality constraints with DS structure, and how to repair the constraints during the solution process are elaborately discussed. Finally, the IEEE 30-bus test system and a real-sized 183-bus China power system are studied to demonstrate the validity and scalability of the proposed model and method.

References

    1. 1)
      • 45. Mittal, N., Singh, U., Sohi, B.S.: ‘Modified grey wolf optimizer for global engineering optimization’, Appl. Comput. Intell. Soft Comput., 2016, 2016, p. 8.
    2. 2)
      • 43. Mirjalili, S., Mirjalili, S.M., Lewis, A.: ‘Grey wolf optimizer’, Adv. Eng. Softw., 2014, 69, pp. 4661.
    3. 3)
      • 18. Sioshansi, R., Short, W.: ‘Evaluating the impacts of real-time pricing on the usage of wind generation’, IEEE Trans. Power Syst., 2009, 24, (2), pp. 516524.
    4. 4)
      • 15. Street, A., Oliveira, F., Arroyo, J.M.: ‘Contingency-constrained unit commitment with nk security criterion: a robust optimization approach’, IEEE Trans. Power Syst., 2011, 26, (3), pp. 15811590.
    5. 5)
      • 39. Oberkampf, W.L., Tucker, W.T., Zhang, J., et al: ‘Dependence in probabilistic modeling, Dempster-Shafer theory, and probability bounds analysis’. Sandia National Laboratories, 2004. Available at https://www.osti.gov/servlets/purl/919189..
    6. 6)
      • 46. Emary, E., Zawbaa, H.M., Hassanien, A.E.: ‘Binary grey wolf optimization approaches for feature selection’, Neurocomputing, 2016, 172, pp. 371381.
    7. 7)
      • 49. Srikanth, K., Panwar, L.K., Panigrahi, B., et al: ‘Meta-heuristic framework: quantum inspired binary grey wolf optimizer for unit commitment problem’, Comput. Electr. Eng., 2018, 70, pp. 243260.
    8. 8)
      • 20. Saber, A.Y., Senjyu, T., Miyagi, T., et al: ‘Fuzzy unit commitment scheduling using absolutely stochastic simulated annealing’, IEEE Trans. Power Syst., 2006, 21, (2), pp. 955964.
    9. 9)
      • 36. Zio, E., Pedroni, N.: ‘Literature review of methods for representing uncertainty’. (FonCSI, 2013). Available at http://www.FonCSI.org/fr/..
    10. 10)
      • 48. Wang, B., Li, Y., Watada, J.: ‘Supply reliability and generation cost analysis due to load forecast uncertainty in unit commitment problems’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 22422252.
    11. 11)
      • 40. Bouissou, O., Goubault, E., Goubault-Larrecq, J., et al: ‘A generalization of p-boxes to affine arithmetic’, Computing, 2012, 94, (2-4), pp. 189201.
    12. 12)
      • 12. Bertsimas, D., Litvinov, E., Sun, X.A., et al: ‘Adaptive robust optimization for the security constrained unit commitment problem’, IEEE Trans. Power Syst., 2013, 28, (1), pp. 5263.
    13. 13)
      • 35. Wang, S., Shahidehpour, S., Kirschen, D.S., et al: ‘Short-term generation scheduling with transmission and environmental constraints using an augmented lagrangian relaxation’, IEEE Trans. Power Syst., 1995, 10, (3), pp. 12941301.
    14. 14)
      • 13. Zhao, C., Wang, J., Watson, J.P., et al: ‘Multi-stage robust unit commitment considering wind and demand response uncertainties’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 27082717.
    15. 15)
      • 8. Wang, Q., Guan, Y., Wang, J.: ‘A chance-constrained two-stage stochastic program for unit commitment with uncertain wind power output’, IEEE Trans. Power Syst., 2011, 27, (1), pp. 206215.
    16. 16)
      • 4. Wang, J., Shahidehpour, M., Li, Z.: ‘Security-constrained unit commitment with volatile wind power generation’, IEEE Trans. Power Syst., 2008, 23, (3), pp. 13191327.
    17. 17)
      • 23. Vaccaro, A., Canizares, C.A.: ‘An affine arithmetic-based framework for uncertain power flow and optimal power flow studies’, IEEE Trans. Power Syst., 2017, 32, (1), pp. 274288.
    18. 18)
      • 28. Fu, Y., Shahidehpour, M., Li, Z.: ‘Security-constrained unit commitment with ac constraints’, IEEE Trans. Power Syst., 2005, 20, (3), pp. 15381550.
    19. 19)
      • 31. Zhong, H., Xia, Q., Wang, Y., et al: ‘Dynamic economic dispatch considering transmission losses using quadratically constrained quadratic program method’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 22322241.
    20. 20)
      • 10. Safdarian, F., Kargarian, A.: ‘Temporal decomposition-based stochastic economic dispatch for smart grid energy management’, IEEE Trans. Smart Grid, 2020, 11, pp. 45444554.
    21. 21)
      • 32. Moore, R.E.: ‘Interval analysis’, vol. 4, (Prentice-Hall Englewood Cliffs, NJ, 1966).
    22. 22)
      • 19. El-Saadawi, M., Tantawi, M., Tawfik, E.: ‘A fuzzy optimization-based approach to large scale thermal unit commitment’, Electr. Power Syst. Res., 2004, 72, (3), pp. 245252.
    23. 23)
      • 1. Zheng, Q.P., Wang, J., Liu, A.L.: ‘Stochastic optimization for unit commitment – a review’, IEEE Trans. Power Syst., 2015, 30, (4), pp. 19131924.
    24. 24)
      • 41. Wood, A.J., Wollenberg, B.F., Sheblé, G.B.: ‘Power generation, operation, and control’ (John Wiley & Sons, Hoboken, NJ, USA, 2013).
    25. 25)
      • 9. Farnaz, Safdarian, Amin, Kargarian: ‘Time decomposition strategy for security-constrained economic dispatch’, IET. Gener. Transm. Distrib., 2019, 13, (22), pp. 51295138.
    26. 26)
      • 21. Zhao, C., Guan, Y.: ‘Unified stochastic and robust unit commitment’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 33533361.
    27. 27)
      • 25. Luo, J., Shi, L., Ni, Y.: ‘Uncertain power flow analysis based on evidence theory and affine arithmetic’, IEEE Trans. Power Syst., 2018, 33, (1), pp. 11131115.
    28. 28)
      • 7. Wang, J., Wang, J., Liu, C., et al: ‘Stochastic unit commitment with sub-hourly dispatch constraints’, Appl. Energy, 2013, 105, pp. 418422.
    29. 29)
      • 17. Dimitroulas, D.K., Georgilakis, P.S.: ‘A new memetic algorithm approach for the price based unit commitment problem’, Appl. Energy, 2011, 88, (12), pp. 46874699.
    30. 30)
      • 27. Zhao, Q., Wang, S., Wang, K., et al: ‘Multi-objective optimal allocation of distributed generations under uncertainty based on ds evidence theory and affine arithmetic’, Int. J. Electr. Power Energy Syst., 2019, 112, pp. 7082.
    31. 31)
      • 11. Ben-Tal, A., El-Ghaoui, L., Nemirovski, A.: ‘Robust optimization’, vol. 28 (Princeton University Press, Princeton, NJ, USA, 2009).
    32. 32)
      • 47. Panwar, L.K., Reddy, S., Verma, A., et al: ‘Binary grey wolf optimizer for large scale unit commitment problem’, Swarm Evolutionary Comput., 2018, 38, pp. 251266.
    33. 33)
      • 44. Faris, H., Aljarah, I., Al-Betar, M.A., et al: ‘Grey wolf optimizer: a review of recent variants and applications’, Neural Comput. Appl., 2018, 30, (2), pp. 413435.
    34. 34)
      • 26. Luo, J., Shi, L., Ni, Y.: ‘A solution of optimal power flow incorporating wind generation and power grid uncertainties’, IEEE Access, 2018, 6, pp. 1968119690.
    35. 35)
      • 37. Ferson, S., Kreinovich, V., Grinzburg, L., et al: ‘Constructing probability boxes and Dempster-Shafer structures’. Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), 2015. Available at https://www.osti.gov/servlets/purl/1427258..
    36. 36)
      • 2. Tuohy, A., Meibom, P., Denny, E., et al: ‘Unit commitment for systems with significant wind penetration’, IEEE Trans. Power Syst., 2009, 24, (2), pp. 592601.
    37. 37)
      • 16. Wang, B., Wang, S., Zhou, X.z., et al: ‘Two-stage multi-objective unit commitment optimization under hybrid uncertainties’, IEEE Trans. Power Syst., 2016, 31, (3), pp. 22662277.
    38. 38)
      • 6. Pozo, D., Contreras, J.: ‘A chance-constrained unit commitment with an nk security criterion and significant wind generation’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 28422851.
    39. 39)
      • 33. Ding, T., Trinchero, R., Manfredi, P., et al: ‘How affine arithmetic helps beat uncertainties in electrical systems’, IEEE Circuits Syst. Mag., 2015, 15, (4), pp. 7079.
    40. 40)
      • 34. Vallée, F., Lobry, J., Deblecker, O.: ‘Impact of the wind geographical correlation level for reliability studies’, IEEE Trans. Power Syst., 2007, 22, (4), pp. 22322239.
    41. 41)
      • 30. Dos-Santos, T.N., Diniz, A.L.: ‘A dynamic piecewise linear model for dc transmission losses in optimal scheduling problems’, IEEE Trans. Power Syst., 2011, 26, (2), pp. 508519.
    42. 42)
      • 42. Aoki, K., Satoh, T.: ‘Economic dispatch with network security constraints using parametric quadratic programming’, IEEE Trans. Power Appar. Syst., 1982, (12), pp. 45484556.
    43. 43)
      • 38. Baudrit, C., Dubois, D., Guyonnet, D.: ‘Joint propagation and exploitation of probabilistic and possibilistic information in risk assessment’, IEEE Trans. Fuzzy Syst., 2006, 14, (5), pp. 593608.
    44. 44)
      • 29. Nasri, A., Kazempour, S.J., Conejo, A.J., et al: ‘Network-constrained ac unit commitment under uncertainty: a benders’ decomposition approach', IEEE Trans. Power Syst., 2016, 31, (1), pp. 412422.
    45. 45)
      • 24. Coletta, G., Vaccaro, A., Villacci, D., et al: ‘Affine arithmetic for efficient and reliable resolution of weather-based uncertainties in optimal power flow problems’, Int. J. Electr. Power Energy Syst., 2019, 110, pp. 713724.
    46. 46)
      • 5. Wu, L., Shahidehpour, M., Li, T.: ‘Stochastic security-constrained unit commitment’, IEEE Trans. Power Syst., 2007, 22, (2), pp. 800811.
    47. 47)
      • 3. Quan, H., Srinivasan, D., Khambadkone, A.M., et al: ‘A computational framework for uncertainty integration in stochastic unit commitment with intermittent renewable energy sources’, Appl. Energy, 2015, 152, pp. 7182.
    48. 48)
      • 50. Löfberg, J.: ‘YALMIP: A Toolbox for Modeling and Optimization in MATLAB’. Taipei, Taiwan, 2004.
    49. 49)
      • 14. Wang, C., Liu, F., Wang, J., et al: ‘Robust risk-constrained unit commitment with large-scale wind generation: an adjustable uncertainty set approach’, IEEE Trans. Power Syst., 2017, 32, (1), pp. 723733.
    50. 50)
      • 22. Pirnia, M., Cañizares, C.A., Bhattacharya, K., et al: ‘A novel affine arithmetic method to solve optimal power flow problems with uncertainties’, IEEE Trans. Power Syst., 2014, 29, (6), pp. 27752783.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2020.0805
Loading

Related content

content/journals/10.1049/iet-gtd.2020.0805
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address