access icon free Novel hybrid signal processing approach based on empirical mode decomposition and multiscale mathematical morphology for islanding detection in distributed generation system

A novel islanding detection technique by hybridising empirical mode decomposition (EMD) and multi-scale mathematical morphology (MMM) is proposed to detect the islanding condition in a distributed generation system to ensure personnel and equipment safety. The proposed method first uses EMD to efficiently separate the collected raw signal into the number of intrinsic mode functions (IMFs) with different frequency scales and the signal is reconstructed considering important IMFs which carry transient features for further analysis using their correlation coefficients. MMM is used for determining a ratio index named as MMMRI, the threshold value of the proposed MMMRI decides islanding and other power quality (PQ) disturbances. The proposed hybrid method name coined as EMD-MMMRI. The main motivation behind hybridising two signal processing techniques is to reduce detection time and improve accuracy. The efficacy of the method is demonstrated for different PQ disturbances and islanding events simulated on a grid-connected, heavily wind energy penetrated distributed generation system using MATLAB/Simulink environment. The test bench validation of the proposed technique is obtained through TMS 320C6713 Starter Kit (DSK) in digital signal processor platform. The efficacy of proposed work is demonstrated with large number of simulation studies.

Inspec keywords: power distribution faults; power grids; electrical safety; digital signal processing chips; signal reconstruction; mathematical morphology; wind power; wind power plants; power supply quality; power engineering computing; distributed power generation; occupational safety; Hilbert transforms

Other keywords: EMD-MMMRI; TMS 320C6713 starter kit; signal reconstruction; IMF; digital signal processor platform; intrinsic mode functions; equipment safety; grid-connected system; power quality disturbances; wind energy; MATLAB-Simulink environment; distributed generation system; personnel safety; correlation coefficients; multiscale mathematical morphology; islanding detection; empirical mode decomposition; hybrid signal processing approach

Subjects: Plant engineering, maintenance and safety; Power supply quality and harmonics; Integral transforms; Integral transforms; Wind power plants; Signal processing and detection; Distributed power generation; Digital signal processing; Power engineering computing; Distribution networks

References

    1. 1)
      • 13. Samui, A., Samantaray, S.R.: ‘Assessment of ROCPAD relay for islanding detection in distributed generation’, IEEE Trans. Smart Grid, 2011, 2, (2), pp. 391398.
    2. 2)
      • 44. Dubey, R., Popov, M., Samantaray, S.R.: ‘Transient monitoring function-based islanding detection in power distribution network’, IET Gener. Transm. Distrib., 2018, 13, (6), pp. 805813.
    3. 3)
      • 14. Samui, A., Samantaray, S.R.: ‘Wavelet singular entropy-based islanding detection in distributed generation’, IEEE Trans. Power Deliv., 2012, 28, (1), pp. 411418.
    4. 4)
      • 33. Li, Y., Xu, M., Liang, X., et al: ‘Application of bandwidth EMD and adaptive multiscale morphology analysis for incipient fault diagnosis of rolling bearings’, IEEE Trans. Ind. Electron., 2017, 64, (8), pp. 65066517.
    5. 5)
      • 30. Li, Y., Liang, X., Zuo, M.J.: ‘Diagonal slice spectrum assisted optimal scale morphological filter for rolling element bearing fault diagnosis’, Mech. Syst. Signal Process., 2017, 85, pp. 146161.
    6. 6)
      • 42. Baghaee, H.R., Mlakić, D., Nikolovski, S., et al: ‘Anti-islanding protection of PV-based microgrids consisting of PHEVs using SVMs’, IEEE Trans. Smart Grid, 2019, 11, (1), pp. 483500.
    7. 7)
      • 6. Timbus, A., Oudalov, A., Ho, C.: ‘Islanding detection in smart grids’. 2010 IEEE Energy Conversion Congress and Exposition IEEE, Atlanta, GA, USA., 2010.
    8. 8)
      • 8. Kunte Rohit, S., Gao, W.: ‘Comparison and review of islanding detection techniques for distributed energy resources’. 2008 40th North American Power Symp., Calgary, AB, Canada, 2008.
    9. 9)
      • 25. Serra, J.: ‘Image analysis and mathematical morphology’ (Academic Press, Inc., Cambridge, Massachusetts, USA., 1983).
    10. 10)
      • 24. Chan, J.C., Tse Peter, W.: ‘A novel, fast, reliable data transmission algorithm for wireless machine health monitoring’, IEEE Trans. Reliab., 2009, 58, (2), pp. 295304.
    11. 11)
      • 36. Photovoltaics, Distributed Generation, and Energy Storage.: ‘IEEE standard for interconnection and interoperability of distributed energy resources with associated electric power systems interfaces’, IEEE Std, 2018, pp. 15472018.
    12. 12)
      • 2. Khamis, A., Shareef, H., Bizkevelci, E., et al: ‘A review of islanding detection techniques for renewable distributed generation systems’, Renew. Sust. Energy Rev.., 2013, 28, pp. 483493.
    13. 13)
      • 20. Singh, R., Mohanty, S.R., Kishor, N., et al: ‘Real-time implementation of signal processing techniques for disturbances detection’, IEEE Trans. Ind. Electron., 2018, 66, (5), pp. 35503560.
    14. 14)
      • 21. Serra, J.: ‘Morphological filtering: an overview’, Signal Process., 1994, 38, (1), pp. 311.
    15. 15)
      • 22. Li, C., Liang, M., Zhang, Y., et al: ‘Multi-scale autocorrelation via morphological wavelet slices for rolling element bearing fault diagnosis’, Mech. Syst. Signal Process. ., 2012, 31, pp. 428446.
    16. 16)
      • 43. Gupta Pankaj, R.S.B., Jain, D.K.: ‘Active ROCOF relay for islanding detection’, IEEE Trans. Power Deliv., 2016, 32, (1), pp. 420429.
    17. 17)
      • 45. Sareen, K., Bhalja, B.R., Maheshwari, R.P.: ‘Islanding detection technique based on inverse hyperbolic secant function’, IET Renew. Power Gener., 2016, 10, (7), pp. 10021009.
    18. 18)
      • 12. Jang Sung, Il, Kim, K.-H.: ‘An islanding detection method for distributed generations using voltage unbalance and total harmonic distortion of current’, IEEE Trans. Power Deliv., 2004, 19, (2), pp. 745752.
    19. 19)
      • 37. Reis, M.V.G., Barros, T.S., Moreira, A.B., et al: ‘Analysis of the sandia frequency shift (SFS) islanding detection method with a single-phase photovoltaic distributed generation system’. 2015 IEEE PES Innovative Smart Grid Technologies Latin America (ISGT LATAM), Montevideo, Uruguay, 2015.
    20. 20)
      • 34. Peng, Z.K., Tse Peter, W., Chu, F.L.: ‘A comparison study of improved Hilbert–Huang transform and wavelet transform: application to fault diagnosis for rolling bearing’, Mech. Syst. Signal Process., 2005, 19, (5), pp. 974988.
    21. 21)
      • 41. Gupta, N., Garg, R.: ‘Algorithm for islanding detection in photovoltaic generator network connected to low-voltage grid’, IET Gener. Transm. Distrib., 2018, 12, (10), pp. 22802287.
    22. 22)
      • 19. Ghalavand, F., Alizade, B.A.M., Gaber, H., et al: ‘Microgrid islanding detection based on mathematical morphology’, Energies, 2018, 11, (10), p. 2696.
    23. 23)
      • 18. Farhan, M.A., Shanti Swarup, K.: ‘Mathematical morphology-based islanding detection for distributed generation’, IET Gener. Transm. Distrib., 2016, 10, (2), pp. 518525.
    24. 24)
      • 7. Yin, G.: ‘A distributed generation islanding detection method based on artificial immune system’. 2005 IEEE/PES Transmission & Distribution Conf. & Exposition: Asia and Pacific, Dalian, China, 2005.
    25. 25)
      • 9. Moradzadeh, M., Rajabzadeh, M., Bathaee, M., et al: ‘Hybrid islanding detection method for distributed generations’. Third Int. Conf. on Electric Utility Deregulation and Restructuring and Power Technologies, Nanjing, China, China, 2008, pp. 22902295.
    26. 26)
      • 16. Hartmann, N.B., dos Santos, R.C., Grilo, A.P., et al: ‘Hardware implementation and real-time evaluation of an ANN-based algorithm for anti-islanding protection of distributed generators’, IEEE Trans. Ind. Electron., 2017, 65, (6), pp. 50515059.
    27. 27)
      • 15. Kim, J.-H., Kim, J.G., Ji, Y.H., et al: ‘An islanding detection method for a grid-connected system based on the Goertzel algorithm’, IEEE Trans. Power Electron., 2011, 26, (4), pp. 10491055.
    28. 28)
      • 23. Huang, N.E., Shen, Z., Long, S.R., et al: ‘The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis’, Proc. R. Soc. London. Series A: Math., Phys. Eng. Sci., 1998, 454, (1971), pp. 903995.
    29. 29)
      • 10. Zeineldin, H.H., Salama, M.M.A.: ‘Impact of load frequency dependence on the NDZ and performance of the SFS islanding detection method’, IEEE Trans. Ind. Electron., 2009, 58, (1), pp. 139146.
    30. 30)
      • 17. El-Arroudi, K., Joos, G., Kamwa, I., et al: ‘Intelligent-based approach to islanding detection in distributed generation’, IEEE Trans. Power Deliv., 2007, 22, (2), pp. 828835.
    31. 31)
      • 4. Chowdhury, S.P., Chowdhury, S., Crossley, P.A.: ‘Islanding protection of active distribution networks with renewable distributed generators: a comprehensive survey’, Electr. Power Syst. Res., 2009, 79, (6), pp. 984992.
    32. 32)
      • 46. Chaitanya, B.K., Yadav, A., Pazoki, M.: ‘An advanced signal decomposition technique for islanding detection in DG system’, IEEE Syst. J. (Early Access), 2020, pp. 110https://doi.org/10.1109/JSYST.2020.3017157.
    33. 33)
      • 27. Li, G., Zhou, M., Luo, Y., et al: ‘Power quality disturbance detection based on mathematical morphology and fractal technique’. 2005 IEEE/PES Transmission & Distribution Conf. & Exposition: Asia and Pacific, Dalian, China, 2005.
    34. 34)
      • 31. Jing, M., Zengping, W., Yan, X., et al: ‘Single-ended transient positional protection of transmission lines using mathematical morphology’. 2005 Int. Power Engineering Conf., Singapore, Singapore, 2005.
    35. 35)
      • 40. Shrivastava, S., Jain, S., Nema, R.K., et al: ‘Two level islanding detection method for distributed generators in distribution networks’, Int. J. Electr. Power Energy Syst., 2017, 87, pp. 222231.
    36. 36)
      • 29. Zhang, L., Xu, J., Yang, J., et al: ‘Multiscale morphology analysis and its application to fault diagnosis’, Mech. Syst. Signal Process., 2008, 22, (3), pp. 597610.
    37. 37)
      • 47. Satapathy, P., Dhar, S., Dash, P.K.: ‘A new hybrid firefly optimized P-Q and V-f controller coordination for PV-DG–based microgrid stabilization’, Int. Trans. Electr. Energy Syst., 2018, 28, (7), p. e2568.
    38. 38)
      • 35. Wei, Y., Xu, M., Wang, X., et al: ‘A hybrid approach for weak fault feature extraction of gearbox’, IEEE Access, 2018, 7, pp. 1661616625.
    39. 39)
      • 38. Niaki, A.H.M., Afsharnia, S.: ‘A new passive islanding detection method and its performance evaluation for multi-DG systems’, Electr. Power Syst. Res., 2014, 110, pp. 180187.
    40. 40)
      • 26. Matheron, G.: ‘Random sets and integral geometry’, 1975, 59.
    41. 41)
      • 5. Ecconnect, “Assessment of islanded operation of distribution networks and measures for protection,” Rep. ETSU K/EL/00235/REP, 2001.
    42. 42)
      • 28. Serra, J.: ‘Image analysis and mathematical morphology’ (Academic, Cambridge, MA, USA, 1982), p. 536.
    43. 43)
      • 1. Basso, T.: ‘IEEE standard for interconnecting distributed resources with the electric power system’. IEEE PES Meeting, Denver, CO, USA., 2004.
    44. 44)
      • 32. Tingfang, Y., Pei, L., Xiangjun, Z., et al: ‘Application of adaptive generalized morphological filter in disturbance identification for power system signatures’. 2006 Int. Conf. on Power System Technology, Chongqing, China, 2006.
    45. 45)
      • 3. Mahat, P., Chen, Z., Bak-Jensen, B.: ‘Review of islanding detection methods for distributed generation’. 2008 Third Int. Conf. on Electric Utility Deregulation and Restructuring and Power Technologies, Nanjing, China, 6–9 April 2008.
    46. 46)
      • 11. Lopes Luiz, A.C., Sun, H.: ‘Performance assessment of active frequency drifting islanding detection methods’, IEEE Trans. Energy Convers., 2006, 21, (1), pp. 171180.
    47. 47)
      • 39. Admasie, S., Bukhari, S.B.A., Haider, R., et al: ‘A passive islanding detection scheme using variational mode decomposition-based mode singular entropy for integrated microgrids’, Electr. Power Syst. Res., 2019, 177, p. 105983.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2020.0780
Loading

Related content

content/journals/10.1049/iet-gtd.2020.0780
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading