access icon free Binary pathfinder algorithm for bus splitting optimisation problem

This study proposes a binary version of the pathfinder algorithm (BPFA) inspired by both the collective movement of animals and the leadership hierarchy of swarms in order to solve the existing bus splitting optimisation (BSO) problem encountered by transmission system operators. Some existing efficient algorithms, such as particle swarm optimisation, binary grey wolf optimiser, and salp swarm algorithms, are also utilised to obtain a suitable solution in the BSO problem and to compare it with the BPFA. The objective function of the BSO problem is built to restrict the short-circuit current and to provide the N − 1 security criteria. A new mathematical approach is proposed so as to assess the security performance of the transmission system during the solving of the BSO problem. The efficacy of the proposed algorithm is tested on well-known benchmark functions as well as IEEE 57 and IEEE 118 bus systems. Various transfer functions and position updating rules are implemented to each of the algorithms to acquire a better transition from continuous context to the binary format. The results obtained of the statistical indicators and the pairwise comparisons validate the efficiency and reliability of the BPFA algorithm in solving the compelling real-world problem.

Inspec keywords: particle swarm optimisation

Other keywords: position updating rules; binary format; objective function; salp swarm algorithms; transmission system operators; binary grey wolf optimiser; particle swarm optimisation; bus splitting optimisation problem; binary pathfinder algorithm; IEEE 118 bus systems; transfer functions; security criteria; BSO problem; BPFA algorithm

Subjects: Optimisation techniques; Optimisation; Optimisation techniques

References

    1. 1)
      • 5. Yang, Z., Zhong, H., Xia, Q., et al: ‘Optimal transmission switching with short-circuit current limitation constraints’, IEEE Trans. Power Syst., 2016, 31, (2), pp. 12781288.
    2. 2)
      • 14. Amraee, T., Saberi, H.: ‘Controlled islanding using transmission switching and load shedding for enhancing power grid resilience’, Int. J. Electr. Power Energy Syst., 2017, 91, pp. 135143.
    3. 3)
      • 43. Sharma, S., Bhattacharjee, S., Bhattacharya, A.: ‘Grey wolf optimisation for optimal sizing of battery energy storage device to minimise operation cost of microgrid’, IET Gener. Transm. Distrib., 2016, 10, (3), pp. 625637.
    4. 4)
      • 48. ‘The IEEE 57-Bus Test System’. Available at https://icseg.iti.illinois.edu/ieee-57-bus-system, accessed 11 April 2020.
    5. 5)
      • 15. Saharuddin, N.Z., Zainal Abidin, I., Mokhlis, H., et al: ‘Power system network splitting strategy based on contingency analysis’, Energies, 2018, 11, (2), p. 434.
    6. 6)
      • 21. Xiao, R., Xiang, Y., Wang, L., et al: ‘Power system reliability evaluation incorporating dynamic thermal rating and network topology optimization’, IEEE Trans. Power Syst., 2018, 33, (6), pp. 60006012.
    7. 7)
      • 38. Emary, E., Zawbaa, H.M., Hassanien, A.E.: ‘Binary grey wolf optimization approaches for feature selection’, Neurocomputing, 2016, 172, pp. 371381.
    8. 8)
      • 32. Kennedy, J., Eberhart, R.: ‘A discrete binary version of the particle swarm algorithm’. 1997 IEEE Int. Conf. on Systems, Man, and Cybernetics, Computational Cybernetics and Simulation, Orlando, FL, USA, October 1997, pp. 41044108.
    9. 9)
      • 20. Heidarifar, M., Ghasemi, H.: ‘A network topology optimization model based on substation and node-breaker modelling’, IEEE Trans. Power Syst., 2016, 31, (1), pp. 247255.
    10. 10)
      • 4. Hagh, M.T., Gargari, M.Z., Pakdel, M.J.V.: ‘Sequential analysis of optimal transmission switching with contingency assessment’, IET Gener. Transm. Distrib., 2018, 12, (6), pp. 13901396.
    11. 11)
      • 45. Narimani, M.R., Vahed, A.A., Azizipanah-Abarghooee, R., et al: ‘Enhanced gravitational search algorithm for multi-objective distribution feeder reconfiguration considering reliability, loss and operational cost’, IET Gener. Trans. Distrib., 2014, 8, (1), pp. 5569.
    12. 12)
      • 26. Karaboga, D., Basturk, B.: ‘A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm’, J. Global Opt., 2007, 39, pp. 459471.
    13. 13)
      • 13. Taheri, M.H., Dehghan, S., Heidarifar, M., et al: ‘Adaptive robust optimal transmission switching considering the uncertainty of net nodal electricity demands’, IEEE Syst. J., 2017, 11, (4), pp. 28722881.
    14. 14)
      • 41. Mahdad, B., Kamel, S.: ‘New strategy based modified salp swarm algorithm for optimal reactive power planning: a case study of the Algerian electrical system (114 bus)’, IET Gener. Transm. Distrib., 2019, 13, (20), pp. 45234540.
    15. 15)
      • 11. Alhazmi, M., Dehghanian, P., Wang, S., et al: ‘Power grid optimal topology control considering correlations of system uncertainties’. 2019 IEEE/IAS 55th Industrial and Commercial Power Systems Technical Conf. (I&CPS), Calgary, Canada, May 2019, pp. 17.
    16. 16)
      • 47. Coello Coello, C.A., Mariano Romero, C.E.: ‘Evolutionary algorithms and multiple objective optimization’, in Ehrgott, M., Gandibleux, X. (eds.): ‘Multiple criteria optimization: state of the art annotated bibliographic surveys’. International Series in Operations Research & Management Science, vol. 52 (Springer, Boston, MA, 2003), pp. 278331.
    17. 17)
      • 1. Namchoat, S., Hoonchareon, N.: ‘Optimal bus splitting for short-circuit current limitation in metropolitan area’. 10th Int. Conf. on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Krabi, Thailand, May 2013, pp. 15.
    18. 18)
      • 23. Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: ‘GSA: a gravitational search algorithm’, Inf. Sci., 2009, 179, pp. 22322248.
    19. 19)
      • 18. Ding, T., Zhao, C.: ‘Robust optimal transmission switching with the consideration of corrective actions for N − k contingencies’, IET Gener. Transm. Distrib., 2016, 10, (13), pp. 32883295.
    20. 20)
      • 51. Salomon, R.: ‘Re-evaluating genetic algorithm performance under corodinate rotation of benchmark functions: a survey of some theoretical and practical aspects of genetic algorithms’, BioSystems, 1996, 39, (3), pp. 263278.
    21. 21)
      • 28. Mirjalili, S., Faris, H., Gandomi, A.H., et al: ‘Salp swarm algorithm: a bio-inspired optimizer for engineering design problems’, Adv. Eng. Softw., 2017, 114, pp. 163191.
    22. 22)
      • 3. Pourahmadi, F., Jooshaki, M., Hosseini, S.H.: ‘A dynamic programming-based heuristic approach for optimal transmission switching problem with N − 1 reliability criterion’. 2016 Int. Conf. on Probabilistic Methods Applied to Power Systems, Beijing, China, October 2016.
    23. 23)
      • 12. Qiu, F., Wang, J.: ‘Chance-constrained transmission switching with guaranteed wind power utilization’, IEEE Trans. Power Syst., 2015, 30, (3), pp. 12701278.
    24. 24)
      • 44. Panwar, L.K., Reddy, K.S., Verma, A., et al: ‘Binary grey wolf optimizer for large scale unit commitment problem’, Swarm. Evol. Comput., 2018, 38, pp. 251266.
    25. 25)
      • 39. Faris, H., Mafarja, M.M., Heidari, A.A., et al: ‘An efficient binary salp swarm algorithm with crossover scheme for feature selection problems’, Knowl.-Based Syst., 2018, 154, pp. 4367.
    26. 26)
      • 8. Dehghanian, P., Kezunovic, M.: ‘Impact assessment of transmission line switching on system reliability performance’. 2015 18th Int. Conf. on Intelligent System Application to Power Systems (ISAP), Porto, Portugal, September 2015, pp. 16.
    27. 27)
      • 33. Lee, S., Soak, S., Oh, S., et al: ‘Modified binary particle swarm optimization’, J. Nat. Sci., 2008, 18, (9), pp. 11611166.
    28. 28)
      • 7. Henneaux, P., Kirschen, D.S.: ‘Probabilistic security analysis of optimal transmission switching’, IEEE Trans. Power Syst., 2016, 31, (1), pp. 508517.
    29. 29)
      • 19. Heidarifar, M., Doostizadeh, M., Ghasemi, H.: ‘Optimal transmission reconfiguration through line switching and bus splitting’. IEEE PES General Meeting | Conf. & Exposition, National Harbor, MD, USA, July 2014, pp. 15.
    30. 30)
      • 27. Mirjalili, S., Mirjalili, S.M., Lewis, A.: ‘Grey wolf optimizer’, Adv. Eng. Softw., 2014, 69, pp. 4661.
    31. 31)
      • 2. Gharibpour, H., Aminifar, F., Bashi, M.H.: ‘Short-circuit-constrained transmission expansion planning with bus splitting flexibility’, IET Gener. Transm. Distrib., 2018, 12, (1), pp. 217226.
    32. 32)
      • 17. Demetriou, P., Kyriacou, A., Kyriakides, E., et al: ‘System splitting strategy considering power system restoration’. 2017 IEEE Manchester PowerTech, Manchester, UK, June 2017, pp. 16.
    33. 33)
      • 40. Rizk-Allah, R.M., Hassanien, A.E., Elhoseny, M., et al: ‘A new binary salp swarm algorithm: development and application for optimization tasks’, Neural Comput. Appl., 2019, 31, pp. 16411663.
    34. 34)
      • 24. Rashedi, E., Rashedi, E., Nezamabadi-pour, H.: ‘A comprehensive survey on gravitational search algorithm’, Swarm. Evol. Comput., 2018, 41, pp. 141158.
    35. 35)
      • 50. Suganthan, P., Hansen, N., Liang, J., et al: ‘Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization’. Tech. Rep, Nanyang Technological University, Singapore, 2005, vol. 2005005.
    36. 36)
      • 22. Holland, J.H.: ‘Genetic algorithms’, Sci. Am., 1992, 267, (1), pp. 6673.
    37. 37)
      • 52. Derrac, J., Molina, G.S.D., Herrera, F.: ‘A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms’, Swarm. Evol. Comput., 2011, 1, (1), pp. 318.
    38. 38)
      • 37. Luo, K., Zhao, Q.: ‘A binary grey wolf optimizer for the multidimensional knapsack problem’, Appl. Soft Comput., 2019, 83, 105645.
    39. 39)
      • 49. ‘The IEEE 118-Bus Test System’. Available at https://icseg.iti.illinois.edu/ieee-118-bus-system, accessed 11 April 2020.
    40. 40)
      • 36. Ozturk, C., Hancer, E., Karaboga, D.: ‘A novel binary artificial bee colony algorithm based on genetic operators’, Inf. Sci., 2015, 297, pp. 154170.
    41. 41)
      • 10. Dehghanian, P., Wang, Y., Gurrala, G., et al: ‘Flexible implementation of power system corrective topology control’, Electr. Power Syst. Res., 2015, 128, pp. 7989.
    42. 42)
      • 42. Taha, İ.B.M., Elattar, E.E.: ‘Optimal reactive power resources sizing for power system operations enhancement based on improved grey wolf optimiser’, IET Gener. Transm. Distrib., 2018, 12, (14), pp. 34213434.
    43. 43)
      • 29. Wolpert, D.H., Macready, W.G.: ‘No free lunch theorems for optimization’, IEEE Trans. Evol. Comput., 1997, 1, pp. 6782.
    44. 44)
      • 9. Kamali, S., Amraee, T., Capitanescu, F.: ‘Controlled network splitting considering transient stability constraints’, IET Gener. Transm. Distrib., 2008, 12, (21), pp. 56395648.
    45. 45)
      • 34. Too, J., Abdullah, A.R., Saad, N.M.: ‘A new co-evolution binary particle swarm optimization with multiple inertia weight strategy for feature selection’, Informatics, 2019, 6, (2), p. 21.
    46. 46)
      • 16. Fernández-Porras, P., Panteli, M., Quirós-Tortós, J.: ‘Intentional controlled islanding: when to island for power system blackout prevention’, IET Gener. Transm. Distrib., 2018, 12, (14), pp. 35423549.
    47. 47)
      • 46. Mirjalili, S., Lewis, A.: ‘S-shaped versus V-shaped transfer functions for binary particle swarm optimization’, Swarm Evol. Comput., 2013, 9, pp. 114.
    48. 48)
      • 6. Dehghanian, P., Kezunovic, M.: ‘Probabilistic decision making for the bulk power system optimal topology control’, IEEE Trans. Smart Grid, 2016, 7, (4), pp. 20712081.
    49. 49)
      • 35. Santana, Jr.C.J., Macedo, M., Siqueira, H., et al: ‘A novel binary artificial bee colony algorithm’, Future Gener. Comput. Syst., 2019, 98, pp. 180196.
    50. 50)
      • 25. Eberhart, R., Kennedy, J.: ‘Particle swarm optimization’. Proc. of ICNN'95 – Int. Conf. on Neural Networks, Perth, WA, Australia, December 1995, pp. 19421948.
    51. 51)
      • 31. Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: ‘BGSA: binary gravitational search algorithm’, Nat. Comput., 2009, 9, (3), pp. 727745.
    52. 52)
      • 30. Yapici, H., Cetinkaya, N.: ‘A new meta-heuristic optimizer: pathfinder algorithm’, Appl. Soft Comput., 2019, 78, pp. 545568.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2020.0729
Loading

Related content

content/journals/10.1049/iet-gtd.2020.0729
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading