Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Graphic RCRA-PIDA tuning based on maximum sensitivity for automatic generation control of thermal and hydro power systems

The frequency control is the mandatory task in a modern power system because of load demand variation and the integration of renewable energy sources (RESs). The main objective of automatic generation control (AGC) scheme is to maintain the balance between generation and load demand. This study proposes a graphical robust characteristic ratio assignment (RCRA) approach for PIDA controller tuning based on maximum sensitivity () for AGC. The basic feature of this graphical approach is that characteristic ratios () in RCRA scheme are calculated in terms of . The important part of this design is that the analytical expressions for coefficient gains of PIDA controller are derived in terms of and system parameters. Here, the non-reheat steam-turbine and hydro-turbine based single and multi-area power systems are considered for validation of the proposed control scheme. The critical issue in controller design for a hydro-turbine based power system is the non-minimum phase behaviour. The robustness and performance of RCRA-PIDA controller are examined under system non-linearities, parametric uncertainty and disturbances. Further, the performance of proposed approach is evaluated in the presence of RESs. Finally, it is observed that the proposed control approach performs better in comparison to the recently published control schemes.

References

    1. 1)
      • 13. Kumar, A., Anwar, M.N.: ‘Decentralized load–frequency controller design for a single as well as multi-area power system’, Iranian J. Sci. Technol. Trans. Electr. Eng., 2020, 44, (1), pp. 309326.
    2. 2)
      • 23. Heshmati, M., Noroozian, R., Jalilzadeh, S., et al: ‘Optimal design of cdm controller to frequency control of a realistic power system equipped with storage devices using grasshopper optimization algorithm’, ISA Trans., 2020, 97, pp. 202215.
    3. 3)
      • 9. Tan, W.: ‘Unified tuning of PID load frequency controller for power systems via IMC’, IEEE Trans. Power Syst., 2010, 25, (1), pp. 341350.
    4. 4)
      • 25. Chu, M., Xu, C., Chu, J.: ‘Graphic imc-pid tuning based on maximum sensitivity for uncertain systems’, Trans. Inst. Meas. Control, 2019, 41, (8), pp. 21962204.
    5. 5)
      • 1. Palchak, D.: ‘Pathways to integrate 175 gigawatts of renewable energy into india's electric grid, vol. i–national study’ (National Renewable Energy Lab. (NREL), Golden, CO, United States, 2017).
    6. 6)
      • 5. Alhelou, H.H., Hamedani-Golshan, M.E., Zamani, R., et al: ‘Challenges and opportunities of load frequency control in conventional, modern and future smart power systems: a comprehensive review’, Energies, 2018, 11, (10), p. 2497.
    7. 7)
      • 7. Sahu, R.K., Gorripotu, T.S., Panda, S.: ‘Automatic generation control of multi-area power systems with diverse energy sources using teaching learning based optimization algorithm’, Eng. Sci. Technol. Int. J., 2016, 19, (1), pp. 113134.
    8. 8)
      • 26. Khodabakhshian, A., Golbon, N.: ‘Robust load frequency controller design for hydro power systems’. Proc. IEEE Conf. on Control Applications (CCA), Toronto, Canada, 2005.
    9. 9)
      • 31. Skogestad, S.: ‘Simple analytic rules for model reduction and PID controller tuning’, J. Process Control, 2003, 13, (4), pp. 291309.
    10. 10)
      • 10. Saikia, L.C., Nanda, J., Mishra, S.: ‘Performance comparison of several classical controllers in agc for multi-area interconnected thermal system’, Int. J. Electr. Power Energy Syst., 2011, 33, (3), pp. 394401.
    11. 11)
      • 4. Latif, A., Hussain, S.S., Das, D.C., et al: ‘State-of-the-art of controllers and soft computing techniques for regulated load frequency management of single/multi-area traditional and renewable energy based power systems’, Appl. Energy, 2020, 266, p. 114858.
    12. 12)
      • 12. Zhao, X., Lin, Z., Fu, B., et al: ‘Research on the predictive optimal pid plus second order derivative method for AGC of power system with high penetration of photovoltaic and wind power’, J. Electr. Eng. Technol., 2019, 14, (3), pp. 10751086.
    13. 13)
      • 16. Raju, M., Saikia, L.C., Sinha, N.: ‘Automatic generation control of a multi-area system using ant lion optimizer algorithm based PID plus second order derivative controller’, Int. J. Electr. Power Energy Syst., 2016, 80, pp. 5263.
    14. 14)
      • 27. Saxena, S., Hote, Y.V.: ‘Stabilization of perturbed system via IMC: an application to load frequency control’, Control Eng. Pract., 2017, 64, pp. 6173.
    15. 15)
      • 29. Kumar, M., Hote, Y.V., Siddhartha, V.: ‘Polynomial controller design and its application: experimental validation on a laboratory setup of non-ideal dc-dc buck converter’, IEEE Trans. Ind. Appl., 2020, 56, pp. 70207031.
    16. 16)
      • 2. Bevrani, H.: ‘‘Robust power system frequency control’, vol. 85 (Springer, 2009).
    17. 17)
      • 19. Liu, C., Liu, G., Fang, J.: ‘Feedback linearization and extended state observer-based control for rotor-ambs system with mismatched uncertainties’, IEEE Trans. Ind. Electron., 2016, 64, (2), pp. 13131322.
    18. 18)
      • 15. Guha, D., Roy, P.K., Banerjee, S.: ‘Multi-verse optimisation: a novel method for solution of load frequency control problem in power system’, IET. Gener. Transm. Distrib., 2017, 11, (14), pp. 36013611.
    19. 19)
      • 34. IEEE Std 112-2004, I.: ‘IEEE standard test procedure for polyphase induction motors and generators (ANSI)’1996.
    20. 20)
      • 24. Sánchez, H.S., Padula, F., Visioli, A., et al: ‘Tuning rules for robust FOPID controllers based on multi-objective optimization with FOPDT models’, ISA Trans., 2017, 66, pp. 344361.
    21. 21)
      • 21. Kim, Y.C., Keel, L.H., Bhattacharyya, S.P.: ‘Transient response control via characteristic ratio assignment’, IEEE Trans. Autom. Control, 2003, 48, (12), pp. 22382244.
    22. 22)
      • 30. Begum, K.G., Rao, A.S., Radhakrishnan, T.: ‘Maximum sensitivity based analytical tuning rules for PID controllers for unstable dead time processes’, Chem. Eng. Res. Des., 2016, 109, pp. 593606.
    23. 23)
      • 20. Kumar, M., Hote, Y.V.: ‘Robust IMC-PIDA controller design for load frequency control of a time delayed power system’. Proc. 58th IEEE Conf. on Decision and Control (CDC), Nice, France, 2019.
    24. 24)
      • 28. Wozniak, L.: ‘A graphical approach to hydrogenerator governor tuning’, IEEE Trans. Energy Convers., 1990, 5, (3), pp. 417421.
    25. 25)
      • 6. Mohamed, T., Bevrani, H., Hassan, A., et al: ‘Decentralized model predictive based load frequency control in an interconnected power system’, Energy Convers. Manage., 2011, 52, (2), pp. 12081214.
    26. 26)
      • 22. Manabe, S.: ‘Coefficient diagram method’, IFAC Proc. Vol., 1998, 31, (21), pp. 211222.
    27. 27)
    28. 28)
      • 33. Hanwate, S.D., Hote, Y.V.: ‘Optimal PID design for load frequency control using QRAWCP approach’, IFAC-PapersOnLine, 2018, 51, (4), pp. 651656.
    29. 29)
      • 3. Pappachen, A., Fathima, A.P.: ‘Critical research areas on load frequency control issues in a deregulated power system: a state-of-the-art-of-review’, Renew. Sustain. Energy Rev., 2017, 72, pp. 163177.
    30. 30)
      • 32. Sondhi, S., Hote, Y.V.: ‘Fractional order PID controller for load frequency control’, Energy Convers. Manage., 2014, 85, pp. 343353.
    31. 31)
      • 35. Overman, E.: ‘‘A matlab tutorial’ (Department of Mathematics, The Ohio State University, Columbus, US, 2011).
    32. 32)
      • 8. Singh, V.P., Mohanty, S.R., Kishor, N., et al: ‘Robust H-infinity load frequency control in hybrid distributed generation system’, Int. J. Electr. Power Energy Syst., 2013, 46, pp. 294305.
    33. 33)
      • 11. Mostafa-Elsaied, M., Abdallah-Attia, M., Abdelhamed-Mostafa, M., et al: ‘Application of different optimization techniques to load frequency control with wecs in a multi-area system’, Electr. Power Compon. Syst., 2018, 46, (7), pp. 739756.
    34. 34)
      • 18. Hosoe, S., Tuan, H., Nguyen, T.: ‘2D bilinear programming for robust PID/DD controller design’, Int. J. Robust Nonlinear Control, 2017, 27, (3), pp. 461482.
    35. 35)
      • 14. Kumar, M., Hote, Y.V.: ‘Robust CDA-PIDA control scheme for load frequency control of interconnected power systems’, IFAC-PapersOnLine, 2018, 51, (4), pp. 616621.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2020.0618
Loading

Related content

content/journals/10.1049/iet-gtd.2020.0618
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address