access icon free Power sharing for transmission systems with 100% inverter-based generating resources

This study proposes controls and power sharing design and architecture for a 100% inverter-based transmission system. Such an operation scenario has already occurred for short periods in portions of several systems in the United States, Europe, and Australia, and is likely to be more frequent in the future. The proposed algorithm enables the inverter-based resources (IBR) to participate in power sharing based on an angle droop method that explicitly takes into account the IBR ratings and preferred set points. This strategy results in an essentially constant-frequency operation of the power system without relying on secondary controllers or communication for frequency restoration. The performance of the proposed architecture under different operating conditions is evaluated via extensive simulation case studies in PSCAD/EMTDC software.

Inspec keywords: invertors; power generation control; distributed power generation

Other keywords: constant-frequency operation; inverter-based generating resources; operation scenario; PSCAD/EMTDC software; inverter-based transmission system; IBR ratings; frequency restoration; power system; power sharing design

Subjects: Distributed power generation; Control of electric power systems

References

    1. 1)
      • 25. Holbert, K.E., Heydt, G.I., Ni, H.: ‘Use of satellite technologies for power system measurements, command, and control’, Proc. IEEE, 2005, 93, (5), pp. 947955.
    2. 2)
      • 14. Ramasubramanian, D., Vittal, V., Undrill, J.M.: ‘Transient stability analysis of an all converter interfaced generation WECC system’. Power Systems Computation Conf. (PSCC), Genoa, Italy, 2016, pp. 17.
    3. 3)
      • 9. Yazdanian, M., Mehrizi-Sani, A.: ‘Distributed control techniques in microgrids’, IEEE Trans. Smart Grid, 2014, 5, (6), pp. 29012909.
    4. 4)
      • 18. Kolluri, R.R., Mareels, I., Alpcan, T., et al: ‘Power sharing in angle droop controlled microgrids’, IEEE Trans. Power Syst., 2017, 32, (6), pp. 47434751.
    5. 5)
      • 2. Halley, A., Martins, N., Gomes, P., et al: ‘Effects of increasing power electronics based technology on power system stability: performance and operations’, CIGRE Sci. Eng., 2018, 11, (2), pp. 517.
    6. 6)
      • 8. Olivares, D., Mehrizi-Sani, A., Etemadi, A., et al: ‘Trends in microgrid control’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 19051919.
    7. 7)
      • 10. Xu, Y.: ‘Robust finite-time control for autonomous operation of an inverter-based microgrid’, IEEE Trans. Ind. Inf., 2017, 13, (5), pp. 27172725.
    8. 8)
      • 22. Kahrobaeian, A., Mohamed, Y.A.R.I.: ‘Networked-based hybrid distributed power sharing and control for islanded microgrid systems’, IEEE Trans. Power Electron., 2015, 30, (2), pp. 603617.
    9. 9)
      • 19. Moussa, H., Shahin, A., Martin, J.P., et al: ‘Optimal angle droop for power sharing enhancement with stability improvement in islanded microgrids’, IEEE Trans. Smart Grid, 2018, 9, (5), pp. 50145026.
    10. 10)
      • 21. Moussa, H., Shahin, A., Martin, J., et al: ‘Optimal angle droop for power sharing enhancement with stability improvement in islanded microgrids’, IEEE Trans. Smart Grid, 2018, 9, (5), pp. 50145026.
    11. 11)
      • 17. Ramasubramanian, D., Farantatos, E., Ziaeinejad, S., et al: ‘Operation paradigm of an all converter interfaced generation bulk power system’, IET Gener. Transm. Distrib., 2018, 12, (19), pp. 42404248.
    12. 12)
      • 11. Mousavi, M., Teymouri, A., Shabestari, P.M., et al: ‘Performance evaluation of an angle droop-based power sharing for a power system dominated by inverter-based generation’. 45th Annual Conf. of the IEEE Industrial Electronics Society (IECON 2019), Lisbon, Portugal, 2019, vol. 1, pp. 24642468.
    13. 13)
      • 16. Yazdanian, M., Mehrizi-Sani, A.: ‘Washout filter-based power sharing’, IEEE Trans. Smart Grid, 2016, 7, (2), pp. 967968.
    14. 14)
      • 1. Kroposki, B., Johnson, B., Zhang, Y., et al: ‘Achieving a 100% renewable grid: operating electric power systems with extremely high levels of variable renewable energy’, IEEE Power Energy Mag., 2017, 15, (2), pp. 6173.
    15. 15)
      • 7. Rocabert, J., Luna, A., Blaabjerg, F., et al: ‘Control of power converters in AC microgrids’, IEEE Trans. Power Electron., 2012, 27, (11), pp. 47344749.
    16. 16)
      • 26. Etemadi, A.H., Davison, E.J., Iravani, R.: ‘A generalized decentralized robust control of islanded microgrids’, IEEE Trans. Power Syst., 2014, 29, (6), pp. 31023113.
    17. 17)
      • 5. Eftekharnejad, S., Vittal, V., Heydt, G.T., et al: ‘Impact of increased penetration of photovoltaic generation on power systems’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 893901.
    18. 18)
      • 15. Denis, G., Prevost, T., Debry, M., et al: ‘The migrate project: the challenges of operating a transmission grid with only inverter-based generation. A grid-forming control improvement with transient current-limiting control’, IET Renew. Power Gener., 2018, 12, (5), pp. 523529.
    19. 19)
      • 4. ‘Variable energy resource modeling workshop, North America Cooperation’, 2017. Available at http://www.nerc.com/comm/pc/pages/powerplant-modeling-and-verification-task- force.aspx.
    20. 20)
      • 12. Zhong, Q.C., Weiss, G.: ‘Synchronverters: inverters that mimic synchronous generators’, IEEE Trans. Ind. Electron., 2011, 58, (4), pp. 12591267.
    21. 21)
      • 24. ‘Program on technology innovation: grid operation with 100% inverter-interfaced supply resources – interim report’, 2018. Available at https://www.epri.com/pages/product/3002012298/.
    22. 22)
      • 13. Arani, M.F.M., El-Saadany, E.F.: ‘Implementing virtual inertia in DFIG-based wind power generation’, IEEE Trans Power Syst, 2013, 28, (2), pp. 13731384.
    23. 23)
      • 23. Majumder, R., Ledwich, G., Ghosh, A., et al: ‘Droop control of converter-interfaced microsources in rural distributed generation’, IEEE Trans. Power Deliv., 2010, 25, (4), pp. 27682778.
    24. 24)
      • 20. John, B., Ghosh, A., Zare, F.: ‘Load sharing in medium voltage islanded microgrids with advanced angle droop control’, IEEE Trans. Smart Grid, 2018, 9, (6) pp. 64616469.
    25. 25)
      • 3. Zhang, Y., Bank, J., Muljadi, E., et al: ‘Power system infrastructure: do we face a complete power-electronics-based power system and energy-storage infrastructure?’, IEEE Power Electron. Mag., 2016, 3, (2), pp. 4245.
    26. 26)
      • 6. Zhang, Y., Bank, J., Muljadi, E., et al: ‘Angle instability detection in power systems with high-wind penetration using synchrophasor measurements’, IEEE J. Emerging Sel. Top. Power Electron., 2013, 1, (4), pp. 306314.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2020.0610
Loading

Related content

content/journals/10.1049/iet-gtd.2020.0610
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading