Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Dual cost-sensitivity factors-based power system transient stability assessment

In actual power system operation, there is a significant imbalance between the number of stable and unstable samples, and the misclassification costs of the two classes of samples are different. In addition to the class imbalance, there is another imbalance of regional samples in the feature space. In order to reduce the impact of class imbalance and regional imbalance on the performance of the model, a method of dual cost-sensitivity factors for transient stability assessment is proposed. The method sets the balance factor and modulating factor in the loss function of light gradient boosting machine. The former corrects the classification bias caused by class imbalance, and the latter focuses on improving the classification accuracy of overlapping area samples. Combining the two factors, the model not only improves the accuracy of unstable samples, but also reduces the misjudgement of stable samples. In online application, a fast update scheme with memory function is proposed. In this scheme, incremental learning is used to update the model with fewer samples and less computational time, so as to achieve better evaluation performance. Case studies on three power systems demonstrate the generalisation performance of the proposed model and the effectiveness of the update scheme.

References

    1. 1)
      • 22. Wang, B., Fang, B., Wang, Y., et al: ‘Power system transient stability assessment based on big data and the core vector machine’, IEEE Trans. Smart Grid, 2016, 7, (5), pp. 25612570.
    2. 2)
      • 19. Pai, M.A.: ‘Energy function analysis for power system stability’ (Kluwer Academic Publishers, Netherlands, 1989).
    3. 3)
      • 24. IEEE Standard for Synchrophasor Measurements for Power Systems, IEEE Std. C37.118.2–2011, pp. 153.
    4. 4)
      • 3. IEEE/CIGRE joint Task Force on Stability Terms and Definitions: ‘Definition and classification of power system stability’, IEEE Trans. Power Syst., 2004, 19, pp. 13871401.
    5. 5)
      • 15. Chen, Z., Han, X.Y, Fan, C.W., et al: ‘A data segmentation-based ensemble classification method for power system transient stability status prediction with imbalanced data’, Appl. Sci., 2019, 9, (20), pp. 115.
    6. 6)
      • 8. Zhang, R., Xu, Y., Dong, Z.Y., et al: ‘Post-disturbance transient stability assessment of power systems by a self-adaptive intelligent system’, IET Gener. Transm. Distrib., 2015, 9, (3), pp. 296305.
    7. 7)
      • 29. Chawla, N.V., Bowyer, K.W., Hall, L.O., et al: ‘SMOTE: synthetic minority over-sampling technique’, J. Artif. Intell. Res., 2002, 16, (1), pp. 321357.
    8. 8)
      • 25. Zhou, Y.Z., Guo, Q.L., Sun, H.B., et al: ‘A novel data-driven approach for transient stability prediction of power systems considering the operational variability’, Int. J. Electr. Power Energy Syst., 2019, 107, (5), pp. 379394.
    9. 9)
      • 10. Zhou, T., Yang, J., Tan, B., et al: ‘Pwer system transient stability assessment based on modified LightGBM’, Power Syst. Technol., 2019, 43, (6), pp. 19311940.
    10. 10)
      • 27. Batista, G.E., Prati, R.C., Monard, M.C.: ‘A study of the behavior of several methods for balancing machine learning training data’, ACM SIGKDD Explor. Newslett., 2004, 6, (1), pp. 2029.
    11. 11)
      • 28. Liu, X.Y., Wu, J., Zhou, Z.H.: ‘Exploratory undersampling for class-imbalance learning’, IEEE Trans. Syst. Man Cybern. B, Cybern., 2009, 39, (2), pp. 539550.
    12. 12)
      • 2. Ni, M., Mccalley, J. D., Vittal, V., et al: ‘Software implementation of online risk-based security assessment’, IEEE Trans. Power Syst., 2003, 18, (3), pp. 11651172.
    13. 13)
      • 20. Rogers, G.: ‘Power system oscillations’ (Kluwer Academic Publishers, Netherlands, 2000).
    14. 14)
      • 1. Anderson, G., Donalek, P., Famer, R., et al: ‘Causes of the 2003 major grid blackouts in North America and Europe, and recommended means to improve system dynamic performance’, IEEE Trans. Power Syst., 2005, 20, (4), pp. 19221928.
    15. 15)
      • 26. Zhu, L.P., Lu, C., Dong, Z.Y., et al: ‘Imbalance learning machine-based power system short-term voltage stability assessment’, IEEE Trans. Ind. Inf., 2017, 13, (5), pp. 25332543.
    16. 16)
      • 31. Lin, W.C., Tsai, C.F., Hu, Y.H., et al: ‘Clustering-based undersampling in class-imbalanced data’, Inf. Sci., 2017, 409, pp. 1726.
    17. 17)
      • 11. Wang, H., Chen, Q.: ‘A transient stability assessment method based on cost-sensitive stacked variational auto-encoder’, Proc. CSEE, 2020, 40, (7), pp. 22132220.
    18. 18)
      • 30. He, H., Bai, Y., Garcia, E.A., et al: ‘ADASYN: adaptive synthetic sampling approach for imbalanced learning’. Proc. IEEE Int. Joint Conf. Neural Netw. (IJCNN), Hong Kong, 2008, pp. 13221328.
    19. 19)
      • 12. Yu, J.J.Q., Hill, D.J., Lam, A.Y.S., et al: ‘Intelligent time-adaptive transient stability assessment system’, IEEE Trans. Power Syst., 2018, 33, (1), pp. 10491058.
    20. 20)
      • 17. Ke, G., Meng, Q., Finely, T., et al: ‘LightGBM: A highly efficient gradient boosting decision tree’. Proc. Adv. Neural Inf. Process. Syst., CA, USA, 2017, pp. 31463154.
    21. 21)
      • 23. Shahriari, B., Swersky, K., Wang, Z., et al: ‘Taking the human out of the loop: A review of Bayesian optimization’, Proc. IEEE, 2016, 104, (1), pp. 148175.
    22. 22)
      • 6. Xue, Y., Van Cutsem, T., Ribbens-Pavella, M.: ‘A simple direct method for fast transient stability assessment of large power systems’, IEEE Trans. Power Syst., 1988, 3, (2), pp. 400412.
    23. 23)
      • 21. Vittal, V., Martin, D., Chu, R., et al: ‘Transient stability test systems for direct stability methods’, IEEE Trans. Power Syst., 1992, 7, (1), pp. 3743.
    24. 24)
      • 16. Friedman, J.H.: ‘Greedy function approximation: a gradient boosting machine’, Ann. Stat., 2001, 29, (5), pp. 11891232.
    25. 25)
      • 13. Moulin, L.S., Da Silva, A.P.A., El-Sharkawi, M.A., et al: ‘Support vector machines for transient stability analysis of large-scale power systems’, IEEE Trans. Power Syst., 2004, 19, (2), pp. 818825.
    26. 26)
      • 9. Chen, Z., Xiao, X.Y., Li, C.S., et al: ‘Real-time transient stability status prediction using cost-sensitive extreme learning machine’, Neural Comput. Appl., 2016, 27, (2), pp. 321331.
    27. 27)
      • 5. Chang, H.D., Chu, C.C.: ‘Direct stability analysis of electric power systems using energy functions: theory, application, and perspective’, Proc. IEEE., 1995, 83, (11), pp. 14971529.
    28. 28)
      • 14. Tan, B.D., Yang, J., Tang, Y.F., et al: ‘A deep imbalanced learning framework for transient stability assessment of power system’, IEEE Access, 2019, 7, pp. 8175981769.
    29. 29)
      • 18. Lin, T.Y., Goyal, P., Girshick, R., et al: ‘Focal loss for dense object detection’, IEEE Trans. Pattern Anal. Mach. Intell., 2020, 42, (2), pp. 318327.
    30. 30)
      • 4. Zadkhast, S., Jatskevich, J., Vaahedi, E.: ‘A multi-decomposition approach for accelerated time-domain simulation of transient stability problems’, IEEE Trans. Power Syst., 2015, 30, (5), pp. 23012311.
    31. 31)
      • 7. Hu, J.K., Vasilakos, A.: ‘Energy big data analytics and security: challenges and opportunities’, IEEE Trans. Smart Grid, 2016, 7, (5), pp. 24232436.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2020.0365
Loading

Related content

content/journals/10.1049/iet-gtd.2020.0365
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address