Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Novel phasor sequence-based fault detection scheme for wide-area backup protection of series-compensated line

For series-compensated line, the distance relay finds its limitations during voltage inversion, current inversion, load encroachment, power swing and balanced fault during the power swing. These limitations can be overcome by wide-area backup protection schemes. This study proposes a novel fault detection technique utilising the synchrophasor data of voltage and current signals at system protection centre. The algorithm compares the phase angle difference between positive-sequence voltage phasor under system intact condition and real-time positive- or negative-sequence current phasor, which is computed from the synchronised data obtained from phasor data concentrator after identifying the possible critical buses to which the faulted line is connected. Different cases of fault type, distance and resistance have been considered to validate the proposed scheme with 3-generator, 9-bus western system coordinating council using MATLAB/Simulink platform. The results justify the suitability of the proposed scheme to be deployed for achieving more reliable performance.

References

    1. 1)
      • 18. Saber, A., Emam, A., Elghazaly, H.: ‘Wide-area backup protection scheme for transmission lines considering cross-country and evolving faults’, IEEE Systems Journal, 2019, 13, (1), pp. 813822.
    2. 2)
      • 4. Gawande, P., Bedekar, P., Bagewadi, M., et al: ‘An adaptive distance relay protection scheme for enhanced protection security’. 2016 IEEE 6th Int. Conf. on Power Systems (ICPS), New Delhi, March 2016, pp. 16.
    3. 3)
      • 21. Tengdin, J., Baker, E., Burke, J., et al: ‘Application of high impedance fault detectors: a summary of the panel session held at the 1995 ieee pes summer meeting’. Proc. of 1996 Transmission and Distribution Conf. and Exposition, Los Angeles, CA, USA, Sept. 1996, pp. 116122.
    4. 4)
      • 15. Amoda, O.A., Schulz, N.N.: ‘An adaptive protection scheme for shipboard power systems’. 2007 IEEE Electric Ship Technologies Symp., Arlington, VA, USA, May 2007, pp. 225230.
    5. 5)
      • 22. Nayak, P.K., Pradhan, A.K., Bajpai, P.: ‘A fault detection technique for the series-compensated line during power swing’, IEEE Trans. Power Deliv., 2013, 28, (2), pp. 714722.
    6. 6)
      • 33. Ram, B.: ‘Power system protection and switchgear’ (McGraw-Hill, New York, USA, 2011).
    7. 7)
      • 19. Sharafi, A., Sanaye-Pasand, M., Aminifar, F.: ‘Transmission system wide-area back-up protection using current phasor measurements’, Int. J. Electr. Power Energy Syst., 2017, 92, pp. 93103.
    8. 8)
      • 12. He, Z., Zhang, Z., Chen, W., et al: ‘Wide-area backup protection algorithm based on fault component voltage distribution’, IEEE Trans. Power Deliv., 2011, 26, (4), pp. 27522760.
    9. 9)
      • 25. Jena, M.K., Samantaray, S.R., Panigrahi, B.K.: ‘A new wide-area backup protection scheme for series-compensated transmission system’, IEEE Syst. J., 2017, 11, (3), pp. 18771887.
    10. 10)
      • 9. Brunello, G., Kasztenny, B.: ‘Distance protection of series compensated lines problems and solutions’. 28 th Annual Western Protective Relay Conf., Spokane, 2001.
    11. 11)
      • 8. Kim, C.H., Heo, J.Y., Aggarwal, R.K.: ‘An enhanced zone 3 algorithm of a distance relay using transient components and state diagram’, IEEE Trans. Power Deliv., 2005, 20, (1), pp. 3946.
    12. 12)
      • 17. Pal, D., Mallikarjuna, B., Reddy, R.J., et al: ‘Synchrophasor assisted adaptive relaying methodology to prevent zone-3 mal-operation during load encroachment’, IEEE Sens. J., 2017, 17, (23), pp. 77137722.
    13. 13)
      • 16. Kundu, P., Pradhan, A.K.: ‘Synchrophasor-assisted zone 3 operation’, IEEE Trans. Power Deliv., 2013, 29, (2), pp. 660667.
    14. 14)
      • 7. Horowitz, S.H., Phadke, A.G.: ‘Third zone revisited’, IEEE Trans. Power Deliv., 2006, 21, (1), pp. 2329.
    15. 15)
      • 10. Bakie, E., Westhoff, C., Fischer, N., et al: ‘Voltage and current inversion challenges when protecting series-compensated lines–a case study’. 2016 69th Annual Conf. for Protective Relay Engineers (CPRE), College Station, TX, USA, Mar. 2016, pp. 114.
    16. 16)
      • 29. Tang, C., Yin, X., Qi, X., et al: ‘The effects of the reverse current caused by the series compensation on the current differential protection’, Sci. World J., 2014, 2014, pp. 16.
    17. 17)
      • 14. Eissa, M.M., Masoud, M.E., Elanwar, M.M.M.: ‘A novel back up wide area protection technique for power transmission grids using phasor measurement unit’, IEEE Trans. Power Deliv., 2010, 25, (1), pp. 270278.
    18. 18)
      • 1. Phadke, A.G., Thorp, J.S.: ‘Synchronized phasor measurements and their applications’ (Springer, Cham, Switzerland, 2017), pp. 185264.
    19. 19)
      • 2. Phadke, A.G., Thorp, J.S.: ‘Computer relaying for power systems’ (Wiley Online Library, West Sussex, England, 2009).
    20. 20)
      • 23. Jena, P., Pradhan, A.K.: ‘A positive-sequence directional relaying algorithm for series-compensated line’, IEEE Trans. Power Deliv., 2010, 25, (4), pp. 22882298.
    21. 21)
      • 26. Terzija, V., Preston, G., Stanojević, V., et al: ‘Synchronized measurements-based algorithm for short transmission line fault analysis’, IEEE Trans. Smart Grid, 2015, 6, (6), pp. 26392648.
    22. 22)
      • 13. Phadke, A.G., Yang, Q., Arana, A.J., et al: ‘A fault steady state component-based wide area backup protection algorithm’, IEEE Transactions on Smart Grid, 2011, 2, (3), pp. 468475.
    23. 23)
      • 32. Horowitz, S.H., Phadke, A.G.: ‘Power system relaying’ (John Wiley & Sons, West Sussex, UK, 2008).
    24. 24)
      • 11. Novosel, D., Phadke, A., Saha, M.M., et al: ‘Problems and solutions for microprocessor protection of series compensated lines’. Sixth Int. Conf. on Developments in Power System Protection (Conf. Publ. No. 434), Nottingham, UK, Mar. 1997, pp. 1823.
    25. 25)
      • 30. Naduvathuparambil, B., Valenti, M.C., Feliachi, A.: ‘Communication delays in wide area measurement systems’. Proc. of the Thirty-Fourth Southeastern Symp. on System Theory (Cat. No. 02EX540), Huntsville, AL, USA, Mar. 2002, pp. 118122.
    26. 26)
      • 6. Lim, S.I., Liu, C.C., Lee, S.J., et al: ‘Blocking of zone 3 relays to prevent cascaded events’, IEEE Trans. Power Syst., 2008, 23, (2), pp. 747754.
    27. 27)
      • 20. Zare, J., Aminifar, F., Sanaye-Pasand, M.: ‘Synchrophasor-based wide-area backup protection scheme with data requirement analysis’, IEEE Trans. Power Deliv., 2014, 30, (3), pp. 14101419.
    28. 28)
      • 31. Pathirikkat, G., Mallikajuna, B., Reddy, M.J.B.: ‘Recent trends on performance analysis of latency on wide area technologies in smart grids’. 2018 20th National Power Systems Conf. (NPSC), Tiruchirappalli, India, Dec. 2018, pp. 16.
    29. 29)
      • 24. Nayak, P.K., Pradhan, A.K., Bajpai, P.: ‘Wide-area measurement-based backup protection for power network with series compensation’, IEEE Trans. Power Deliv., 2014, 29, (4), pp. 19701977.
    30. 30)
      • 27. ‘Manual on Transmission Planning Criteria-Central Electricity Authority’, January 2013.
    31. 31)
      • 3. Kansal, P., Bose, A.: ‘Bandwidth and latency requirements for smart transmission grid applications’, IEEE Trans. Smart Grid, 2012, 3, (3), pp. 13441352.
    32. 32)
      • 28. Kundu, P., Pradhan, A.K.: ‘Power network protection using wide-area measurements considering uncertainty in data availability’, IEEE Syst. J., 2018, 12, (4), pp. 33583368.
    33. 33)
      • 5. Nayak, P.K., Pradhan, A.K., Bajpai, P.: ‘Secured zone 3 protection during stressed condition’, IEEE Trans. Power Deliv., 2014, 30, (1), pp. 8996.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2020.0285
Loading

Related content

content/journals/10.1049/iet-gtd.2020.0285
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address