Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Investigations of cable termination thermal analysis under continuous current loading

In this study, alternative methodological approaches are used to calculate the temperature distribution along the length of the termination of a single core cable. The analysis is done based on the heat flow produced by cable conductor and heat transfer by conduction, convection, and radiation. A comparison of the obtained temperature distribution along the cable termination length and the cable adjacent part using an analytical method with the results of both actual measurements and calculations done by finite-element method (FEM) was done, which revealed a good agreement for various load currents. The performed computations by using the analytical method and FEM gave results within ±6% difference with measured conductor temperature. The influences of the cable loading current and the insulation thermal conductivity of the cable termination on its maximum temperature rise along the length of the cable termination have been discussed. Finally, this study is concerned with the measurement and prediction of the temperature distribution in the cable termination. More clarifications of the used measured technique and prediction approaches are presented in the study.

References

    1. 1)
      • 1. Abdel Aziz, M.M., Riege, H.: ‘Thermal analysis of cable sealing ends’, IEEE Trans. Power Appar. Syst., 1980, PAS-99, (2), pp. 829832.
    2. 2)
      • 26. Espino-Cortes, P., Jayaram, S., Cherney, E.A.: ‘Stress grading materials for cable terminations under fast rise time pulses’, IEEE Trans. Dielectr. Electr. Insul., 2006, 13, (1), pp. 430435.
    3. 3)
      • 28. Stephenson, P.L.: ‘A comparison of various finite element methods for the solution of coupled conduction-convection problems’. Third Int. Conf. on Numerical Methods in Thermal Problems, Seattle, USA, 1983.
    4. 4)
      • 22. Lin, S., Hu, W.: ‘Theoretical research on temperature field of power cable joint with FEM’. Int. Conf. on System Science and Engineering, Dalian, China, 30 June–2 July 2012, pp. 564567.
    5. 5)
      • 7. El-Kady, M.A., Hydro, O.: ‘Calculation of the sensitivity of power cable ampacity to variations of design and environmental parameters’, IEEE Trans. Power Appl. Syst., 1984, PAS-103, (8), pp. 20432050.
    6. 6)
      • 10. Gouda, O.E., Osman, G.F.A., Salem, W.A.A., et al: ‘Load cycling of underground distribution cables including thermal soil resistivity variation with soil temperature and moisture content’, IET Gener. Transm. Distrib., 2018, 12, (18), pp. 41254133.
    7. 7)
      • 32. IEC 60228 International Electrotechnical Commission's International Standard: ‘Conductors of insulated cables’, Third Edition 2004-11.
    8. 8)
      • 17. Morello, A.: ‘Cooling of an external sealing end’, PM/AM/017, Private Communication, 26 September 1984.
    9. 9)
      • 29. Abu Zarim, Z.A., Abd Ghani, A.B., Tiong, S.K.: ‘The measurement and temperature profile of cable insulation failure due to loose connection at the cable termination’. Int. Symp. on Electrical Insulating Materials, (ISEIM 2008), Mie, Japan, 7–11 September 2008.
    10. 10)
      • 16. Selsing, J.: ‘A versatile computer method for computation of conductor temperatures in cable terminations and pipe cable systems’, IEEE Trans. Power Appar. Syst., 1985, PAS-104, (4), pp. 768774.
    11. 11)
      • 24. Ming, L., Sahlen, F., Halen, S., et al: ‘Insulation performance of cable-terminations with resistive stress-grading under high frequency voltages’. XIVth Int. Sym. High Voltage Eng., Tsinghua University, Beijing, China, 2005, Paper I-18, pp. 14.
    12. 12)
      • 20. Selsing, J., Nicholas, J.H., Gear, R.B.: ‘Cable terminations for forced cooled high voltage pipe type cable systems’, IEEE Trans. Power Appar. Syst., 1982, PAS-101, (3), pp. 499508.
    13. 13)
      • 21. Gouda, O.E., El Dein, A.Z.: ‘Electro-thermal analysis of low and medium voltage cable joints’, Electr. Power Compon. Syst., 2016, 44, (1), pp. 110121.
    14. 14)
      • 35. Temperature limitations of connections must not be exceeded, codes & standards’, Available at https://www.ecmag.com/section/codes-standards, NEC, 2020.
    15. 15)
      • 3. Gouda, O.E.: ‘Environmental impacts on underground power distribution’, ‘Advances in Computer and Electrical Engineering (IGI Global, 2016).
    16. 16)
      • 9. Kellow, M.A.: ‘A numerical procedure for the calculation of the temperature rise and capacity of underground cables’, IEEE Trans. Power Appl. Syst., 1981, PAS-100, (7), pp. 33223330.
    17. 17)
      • 27. Selsing, J.: ‘High-ampacity terminations’. EPRI Report EL-2233, Epri Report, 1982.
    18. 18)
      • 25. Tamus, Z.A., Nemeth, B., Kiss, I., et al: ‘Complex examination of a cable terminal failure’. IEEE Int. Sym. on Electrical Insulation (ISEI), Vancouver, BC, 2008, pp. 4749.
    19. 19)
      • 8. Garrido, C., Otero, A.F., Cidras, J.: ‘Theoretical model to calculate steady-state and transient ampacity and temperature in buried cables’, IEEE Trans. Power Deliv., 2003, 18, (3), pp. 667678.
    20. 20)
      • 12. 3M Science applied to life: ‘Power cable splicing and terminating guide’, Available at https://media.distributordatasolutions.com/3M/2018q1/5a9ec41a8b4865eb70059fe3670116e4d63a4078.pdf.
    21. 21)
      • 15. De León, F.: ‘Major factors affecting cable ampacity’. 2006 IEEE Power Engineering Society General Meeting, Montreal, Que., 2006, pp. 16.
    22. 22)
      • 4. Al-Saud, M.S., El-Kady, M.A., Findlay, R.D: ‘A new approach to underground cable performance assessment’, Electr. Power Syst. Res., 2008, 78, pp. 907918.
    23. 23)
      • 13. ‘IEEE guide for the design and installation of cable systems in substations sponsor substations committee of the IEEE power engineering society approved 8 march 2007, IEEE-SA standards board’.
    24. 24)
      • 23. Selsing, J.: ‘High-ampacity terminations’, EPRI Report EL-2233, 1982.
    25. 25)
      • 5. Gouda, O.E., El Dein, A.Z., Amer, G.M.: ‘Effect of the formation of the dry zone around underground power cables on their ratings’, IEEE Trans. Power Deliv., 2011, 26, (2), pp. 972978.
    26. 26)
      • 30. Xiao, M., Du, B., Kong, X., et al: ‘Effect of short circuit current on temperature distribution of current lead for HTS cable termination’, IEEE Trans. Appl. Supercond., 2019, PP, (99), pp. 11.
    27. 27)
      • 19. Shaker, Y.O., El-Hag, A.H., Patel, U., et al: ‘Thermal modeling of medium voltage cable terminations under square pulses’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (3), pp. 932939.
    28. 28)
      • 31. IEC 60287: ‘Calculation of the continuous current rating of cables (100% load factor)’, International Electrotechnical Commission Standard, 1982.
    29. 29)
      • 2. Gouda, O.E.: ‘Cooling systems for cable joints’. PhD thesis, Cairo University, 1982.
    30. 30)
      • 34. Holman, J.P.: ‘Heat transfer’ (McGraw-Hill, New York, 1986, 6th edn.).
    31. 31)
      • 6. Neher, J.H., McGrath, M.H.: ‘The calculation of the temperature rises and load capability of cable systems’, AIEE Trans., 1957, 76, (Pt. 3), pp. 752772.
    32. 32)
      • 14. IEC 60502: ‘Power cables with extruded insulation and their accessories for rated voltages from 1 kV (Um = 1.2 kV) up to 30 kV (Um = 36 kV)’, Second edition 2004-04.
    33. 33)
      • 11. Gouda, O.E., Osman, G.F.A., Salem, W.A.A., et al: ‘Cyclic loading of underground cables including the variations of backfill soil thermal resistivity and specific heat with temperature variation’, IEEE Trans. Power Deliv., 2018, 33, (6), pp. 31223129.
    34. 34)
      • 18. Gouda, O.E.: ‘Thermal analysis of natural cooling sealing ends of H.V. Cables with or without heat pipes’. First Symp. on Electric Power Systems in Fast Developing Countries, Riyadh, Kingdom of Saudi Arabia, March 21–24 1987, pp. 636641.
    35. 35)
      • 33. Martynenko, O.G., Khramtsov, P.P.: ‘Free convective heat transfer’ (Springer-Verlag, Berlin, Germany, 2005).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2020.0234
Loading

Related content

content/journals/10.1049/iet-gtd.2020.0234
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address