Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Intelligent approach for residential load scheduling

Residential load scheduling has been introduced in recent years as a result of implementing demand response programmes in the residential sector. Up to now, studies have focussed on developing algorithms for scheduling the residential loads with the objective of reducing the electricity payment while satisfying the users’ comfort level. To aim at this goal, the user should determine the desired scheduling window for each appliance to initiate the scheduling process. Although these algorithms designed to benefit the end-users, determining the scheduling window for each appliance at the beginning of the scheduling process can be challenging. In this study, an intelligent load scheduling model is proposed to perform the scheduling with the least user intervention. The proposed model predicts the preferred scheduling window for each appliance and initiates the scheduling process. Furthermore, the degradation cost of the battery pack in the vehicle-to-grid mode is considered in the cost function. The model is applied to a case study containing plug-in hybrid electric vehicle and flexible loads such as a washing machine and dishwasher under inclining block rates and hourly pricing tariffs. The results indicate that implementing the model in a residential building can decrease the electricity payment while performing the residential load scheduling with the least user intervention.

References

    1. 1)
      • 43. Liu, H., Wang, Y., Chen, W.: ‘Anomaly detection for condition monitoring data using auxiliary feature vector and density-based clustering’, IET Gener. Transm. Distrib., 2019, 14, (1), pp. 108118.
    2. 2)
      • 13. Safdarian, A., Fotuhi-Firuzabad, M., Lehtonen, M.: ‘Optimal residential load management in smart grids: A decentralized framework’, IEEE Trans. Smart Grid, 2016, 7, (4), pp. 18361845.
    3. 3)
      • 47. Kuzlu, M.: ‘Score-based intelligent home energy management (HEM) algorithm for demand response applications and impact of HEM operation on customer comfort’, IET Gener. Transm. Distrib., 2015, 9, (7), pp. 627635.
    4. 4)
      • 11. Al-Ali, A.-R., Zualkernan, I.A., Rashid, M., et al: ‘A smart home energy management system using IoT and big data analytics approach’, IEEE Trans. Consum. Electron., 2017, 63, (4), pp. 426434.
    5. 5)
      • 17. Reihani, E., Sepasi, S., Ghorbani, R.: ‘Scheduling of price-sensitive residential storage devices and loads with thermal inertia in distribution grid’, Appl. Energy, 2016, 183, pp. 636644.
    6. 6)
      • 49. Hu, X., Moura, S.J., Murgovski, N., et al: ‘Integrated optimization of battery sizing, charging, and power management in plug-in hybrid electric vehicles’, IEEE Trans. Control Syst. Technol., 2016, 24, (3), pp. 10361043.
    7. 7)
      • 24. Remani, T., Jasmin, E.A., Ahamed, T.P.I.: ‘Residential load scheduling with renewable generation in the smart grid: a reinforcement learning approach’, IEEE Syst. J., 2018, PP, (99), pp. 112.
    8. 8)
      • 7. Zhao, Z., Lee, W.C., Shin, Y., et al: ‘An optimal power scheduling method for demand response in home energy management system’, IEEE Trans. Smart Grid, 2013, 4, (3), pp. 13911400.
    9. 9)
      • 39. Ramírez-Mendiola, J.L., Grünewald, P., Eyre, N.: ‘Residential activity pattern modelling through stochastic chains of variable memory length’, Appl. Energy, 2019, 237, pp. 417430.
    10. 10)
      • 46. Mohaghegi, S., Del Valle, Y., Venayagamoorthy, G.K., et al: ‘A comparison of PSO and backpropagation for training RBF neural networks for identification of a power system with statcom’. Proc. – 2005 IEEE Swarm Intelligence Symp. SIS 2005, Pasadena, CA, USA, 2005, vol. 2005, pp. 391394.
    11. 11)
      • 35. Han, S., Han, S., Aki, H.: ‘A practical battery wear model for electric vehicle charging applications’, Appl. Energy, 2014, 113, pp. 11001108.
    12. 12)
      • 29. Dubarry, M., Devie, A., McKenzie, K.: ‘Durability and reliability of electric vehicle batteries under electric utility grid operations: bidirectional charging impact analysis’, J. Power Sources, 2017, 358, pp. 3949.
    13. 13)
      • 36. Nazerfard, E.: ‘Temporal features and relations discovery of activities from sensor data’, J. Ambient Intell. Humaniz. Comput., 2018, 66, pp. 16.
    14. 14)
      • 21. Li, T., Dong, M.: ‘Real-time residential-side joint energy storage management and load scheduling with renewable integration’, IEEE Trans. Smart Grid, 2016, 9, (1), pp. 283298.
    15. 15)
      • 50. GAMS SBB’, [Online]. Available at: https://www.gams.com/latest/docs/S_SBB.html. [Accessed: 09-Sep-2019].
    16. 16)
      • 45. Young, K., Chung, N., Hwang, S.: ‘Ecological informatics application of an arti fi cial neural network (ANN) model for predicting mosquito abundances in urban areas’, Ecol. Inform., 2016, 36, pp. 172180.
    17. 17)
      • 33. Mohsenian-Rad, A.-H., Leon-Garcia, A.: ‘Optimal residential load control with price prediction in real-time electricity pricing environments’, IEEE Trans. Smart Grid, 2010, 1, (2), pp. 120133.
    18. 18)
      • 10. Han, J., Choi, C.-S., Park, W.-K., et al: ‘PLC-based photovoltaic system management for smart home energy management system’, IEEE Trans. Consum. Electron., 2014, 60, (2), pp. 184189.
    19. 19)
      • 8. Deese, A.S., Carrigan, B., Stein, E., et al: ‘Automation of residential load in power distribution systems with focus on demand response’, IET Gener. Transm. Distrib., 2013, 7, (4), pp. 357365.
    20. 20)
      • 12. Han, J., Choi, C.-S., Park, W.-K., et al: ‘Smart home energy management system including renewable energy based on ZigBee and PLC’, IEEE Trans. Consum. Electron., 2014, 60, (2), pp. 198202.
    21. 21)
      • 48. Tang, L., Rizzoni, G.: ‘Energy management strategy including battery life optimization for a HEV with a CVT’. 2016 IEEE Transportation Electrification Conf. and Expo, Asia-Pacific (ITEC Asia-Pacific), Busan, Republic of Korea, 2016, pp. 549554.
    22. 22)
      • 2. Rajabi, A., Eskandari, M., Jabbari Ghadi, M., et alA pattern recognition methodology for analyzing residential customers load data and targeting demand response applications’, Energy Build., 2019, 203, p. 109455.
    23. 23)
      • 22. Mirakhorli, A., Dong, B.: ‘Model predictive control for building loads connected with a residential distribution grid’, Appl. Energy, 2018, 230, pp. 627642.
    24. 24)
      • 38. An, J., Yan, D., Hong, T.: ‘Clustering and statistical analyses of air-conditioning intensity and use patterns in residential buildings’, Energy Build., 2018, 174, pp. 214227.
    25. 25)
      • 25. Rastegar, M., Fotuhi-Firuzabad, M., Zareipour, H., et al: ‘A probabilistic energy management scheme for renewable-based residential energy hubs’, IEEE Trans. Smart Grid, 2017, 8, (5), pp. 22172227.
    26. 26)
      • 52. Setlhaolo, D., Xia, X., Zhang, J.: ‘Optimal scheduling of household appliances for demand response’, Electr. Power Syst. Res., 2014, 116, pp. 2428.
    27. 27)
      • 18. Shoji, T., Hirohashi, W., Fujimoto, Y., et al: ‘Personalized energy management systems for home appliances based on Bayesian networks’, J. Int. Counc. Electr. Eng., 2015, 5, (1), pp. 6469.
    28. 28)
      • 5. Sun, Y., Wang, S., Xiao, F., et al: ‘Peak load shifting control using different cold thermal energy storage facilities in commercial buildings: a review’, Energy Convers. Manage., 2013, 71, pp. 101114.
    29. 29)
      • 41. Li, C., Cai, W., Yu, C., et al: ‘Electricity consumption behaviour analysis based on adaptive weighted-feature K-means-AP clustering’, IET Gener. Transm. Distrib., 2019, 13, pp. 23522361.
    30. 30)
      • 6. Samadi, P., Mohsenian-Rad, H., Wong, V.W.S., et al: ‘Tackling the load uncertainty challenges for energy consumption scheduling in smart grid’, IEEE Trans. Smart Grid, 2013, 4, (2), pp. 10071016.
    31. 31)
      • 32. Rastegar, M., Fotuhi-Firuzabad, M., Aminifar, F.: ‘Load commitment in a smart home’, Appl. Energy, 2012, 96, pp. 4554.
    32. 32)
      • 16. Sharifi, A.H., Maghouli, P.: ‘Energy management of smart homes equipped with energy storage systems considering the PAR index based on real-time pricing’, Sustain. Cities Soc., 2019, 45, pp. 579587.
    33. 33)
      • 37. Xia, D., Lou, S., Huang, Y., et al: ‘A study on occupant behaviour related to air-conditioning usage in residential buildings’, Energy Build., 2019, 203, p. 109446.
    34. 34)
      • 51. MATLAB – MathWorks – MATLAB & simulink’, [Online]. Available at: https://www.mathworks.com/products/matlab.html. [Accessed: 09-Sep-2019].
    35. 35)
      • 42. Zang, T., He, Z., Fu, L., et al: ‘Adaptive method for harmonic contribution assessment based on hierarchical K-means clustering and Bayesian partial least squares regression’, IET Gener. Transm. Distrib., 2016, 10, (13), pp. 32203227.
    36. 36)
      • 26. Li, T., Dong, M.: ‘Residential energy storage management with bidirectional energy control’, IEEE Trans. Smart Grid, 2019, 10, pp. 35963611.
    37. 37)
      • 3. Vardakas, J.S., Zorba, N., Verikoukis, C.V.: ‘A survey on demand response programs in smart grids: pricing methods and optimization algorithms’, IEEE Commun. Surv. Tutorials, 2015, 17, (1), pp. 152178.
    38. 38)
      • 20. Iqbal, Z., Javaid, N., Mohsin, S., et al: ‘Performance analysis of hybridization of heuristic techniques for residential load scheduling’, Energies, 2018, 11, (10), p. 2861.
    39. 39)
      • 23. Molla, T., Khan, B., Moges, B., et al: ‘Integrated optimization of smart home appliances with cost-effective energy management system’, CSEE J. Power Energy Syst., 2019, 5, (2), pp. 249258.
    40. 40)
      • 4. Sadat-Mohammadi, M., Asadi, S., Habibnezhad, M., et al: ‘Robust scheduling of multi-chiller system with chilled-water storage under hourly electricity pricing’, Energy Build., 2020, 218, p. 110058.
    41. 41)
      • 1. EIA – electricity data’, [Online]. Available at: https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_5_01. [Accessed: 28-Apr-2020].
    42. 42)
      • 31. Mathieu, R., Baghdadi, I., Briat, O., et al: ‘D-optimal design of experiments applied to lithium battery for ageing model calibration’, Energy, 2017, 141, pp. 21082119.
    43. 43)
      • 28. Mehrjerdi, H., Rakhshani, E.: ‘Vehicle-to-grid technology for cost reduction and uncertainty management integrated with solar power’, J. Clean. Prod., 2019, 229, pp. 463469.
    44. 44)
      • 9. Shafie-Khah, M., Siano, P.: ‘A stochastic home energy management system considering satisfaction cost and response fatigue’, IEEE Trans. Ind. Inf., 2018, 14, (2), pp. 629638.
    45. 45)
      • 40. Afzalan, M., Jazizadeh, F.: ‘Residential loads flexibility potential for demand response using energy consumption patterns and user segments’, Appl. Energy, 2019, 254, p. 113693.
    46. 46)
      • 14. Yahia, Z., Pradhan, A.: ‘Optimal load scheduling of household appliances considering consumer preferences: an experimental analysis’, Energy, 2018, 163, pp. 1526.
    47. 47)
      • 30. Thompson, A.W.: ‘Economic implications of lithium ion battery degradation for vehicle-to-grid (V2X) services’, J. Power Sources, 2018, 396, pp. 691709.
    48. 48)
      • 19. Lokeshgupta, B., Sivasubramani, S.: ‘Multi-objective home energy management with battery energy storage systems’, Sustain. Cities Soc., 2019, 47, p. 101458.
    49. 49)
      • 34. De Los Ros, A., Goentzel, J., Nordstrom, K.E., et al: ‘Economic analysis of vehicle-to-grid (V2G)-enabled fleets participating in the regulation service market’. 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), Washington Marriott Wardman Park (DC), USA, 2012, pp. 18.
    50. 50)
      • 27. Sharma, I., Canizares, C., Bhattacharya, K.: ‘Smart charging of PEVs penetrating into residential distribution systems’, IEEE Trans. Smart Grid, 2014, 5, (3), pp. 11961209.
    51. 51)
      • 15. Nan, S., Zhou, M., Li, G.: ‘Optimal residential community demand response scheduling in smart grid’, Appl. Energy, 2018, 210, pp. 12801289.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2020.0143
Loading

Related content

content/journals/10.1049/iet-gtd.2020.0143
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address