Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Effect of mineral oil on flashover voltage of HTV silicone rubber under AC corona ageing: from the view of trap level distribution

The flashover voltage of high temperature vulcanised (HTV) silicone rubber will be decreased after corona ageing, and it further decreases under the effect of mineral oil. The mechanisms for the phenomena can be explained by considering the role of trap level distribution. In this study, the corona ageing of silicone rubber was conducted and the flashover voltage was tested. The isothermal surface potential decay was tested to explore the internal relationship between trap distribution and flashover voltage. Besides, the surface microtopography and chemical structure of silicone rubber were gained by scanning electron microscopy and Fourier infrared spectroscopy to explain the change of trap distribution. The test results show that the flashover voltage of HTV silicone rubber decreases with AC corona ageing time, the reduction of flashover voltage for an oil-impregnated sample is more serious. The density of shallow electron traps increases at first and then decreases, while the density of shallow hole traps increases with ageing time. The density of deep traps decreases after corona ageing. These trap level distribution characteristics are beneficial to promote the development of flashover, leading to lower flashover voltage. The effect of mineral oil can be regarded as an accelerated ageing effect.

References

    1. 1)
      • 6. Wang, Z., Jia, Z.D., Fang, M.H., et al: ‘Influence of water, NaCl solution, and HNO3 solution on high temperature vulcanized silicone rubber’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (2), pp. 11641173.
    2. 2)
      • 11. Wei, W.F., Wu, J., Gao, G.Q., et al: ‘Study on pantograph arcing in a laboratory simulation system by high-speed photography’, IEEE Trans. Plasma Sci., 2016, 44, (10), pp. 24382445.
    3. 3)
      • 15. Du, B.X., Du, Q., Li, J., et al: ‘Carrier mobility and trap distribution dependent flashover characteristics of epoxy resin’, IET Gener. Transm. Distrib., 2018, 12, (2), pp. 466471.
    4. 4)
      • 23. Simmons, J.G., Tam, M.C.: ‘Theory of isothermal currents and the direct determination of trap parameters in semiconductors and insulators containing arbitrary trap distributions’, Phys. Rev. B, 1973, 7, (8), pp. 37063713.
    5. 5)
      • 17. Shen, W.W., Mu, H.B., Zhang, G.J., et al: ‘Identification of electron and hole trap based on isothermal surface potential decay model’, J. Appl. Phys., 2020, 113, (8), p. 083706.
    6. 6)
      • 1. Allen, N.L., Hashem, A., Rodrigo, H., et al: ‘Streamer development on silicone-rubber insulator surfaces’, IEE Proc. Sci. Meas. Technol., 2004, 151, (1), pp. 3138.
    7. 7)
      • 10. Wei, W.F., He, S., Yang, Z.F., et al: ‘Electromechanical efficiency improvement of the surface DBD by composite dielectric’, AIP Adv., 2019, 9, (4), p. 7.
    8. 8)
      • 3. Zhu, Y., Zhang, X.R., Zhou, S.C., et al: ‘Ageing performance of HTV silicone rubber used for outdoor insulation’. 2018 IEEE/PES Transm. and Distrib. Conf. and Exposition (T&D), Denver, CO, USA, August 2018.
    9. 9)
      • 21. Li, J.Y., Zhou, F.S., Min, D.M., et al: ‘The energy distribution of trapped charges in polymers based on isothermal surface potential decay model’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (3), pp. 17231732.
    10. 10)
      • 4. Xie, C.Z., Zhang, Y., Wang, J.G., et al: ‘Microstructure analysis of AC corona aging of silicone rubber’. Proc. of 9th Int. Conf. Properties and Applications of Dielectric Materials, Harbin China, July 2009, pp. 481484.
    11. 11)
      • 28. Thabet, A.: ‘Theoretical analysis for effects of nanoparticles on dielectric characterization of electrical industrial materials’, Electr. Eng. (ELEN) J., 2017, 99, (2), pp. 487493.
    12. 12)
      • 8. IEEE Std 987TM-2001: ‘IEEE guide for application of composite insulators’, 2001.
    13. 13)
      • 24. Song, W., Shen, W.W., Wang, G.L., et al: ‘Influence of corona discharge aging on trap characteristics of high temperature vulcanized silicone rubber material’, High Volt. Eng., 2013, 39, (4), pp. 979986.
    14. 14)
      • 7. Yao, G., Wen, X.S., Lan, L., et al: ‘Effects of transformer oil on insulation performance of RTV silicone rubber(Ⅰ)’, High Volt. Eng., 2017, 37, (1), pp. 9198.
    15. 15)
      • 12. Song, W., Shen, W.W., Zhang, G.J., et al: ‘Aging characterization of high temperature vulcanized silicone rubber housing material used for outdoor insulation’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (2), pp. 961969.
    16. 16)
      • 29. Du, B.X., Li, Z.L., J, L.I.: ‘Surface charge accumulation and decay of direct-fluorinated RTV silicone rubber’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (5), pp. 23382342.
    17. 17)
      • 25. Tommer, R., Lewis, T.J.: ‘Charge trapping in corona-charged poly-ethylene films’, J. Phys. D: Appl. Phys., 1980, 13, (7), pp. 13431356.
    18. 18)
      • 26. Du, B.X., Liang, H.C., Li, J., et al: ‘Temperature dependent surface potential decay and flashover characteristics of epoxy/sic composites’, IEEE Trans. Dielectr. Electr. Insul., 2018, 25, (2), pp. 631638.
    19. 19)
      • 14. Kang, W.B., Yan, C.Y., Li, S.J., et al: ‘Trap and carrier transport of pristine and aged silicone rubber by surface potential measurements’. Proc. Int. Symp. Electrical Insulating Materials (ISEIM), Toyohashi, Japan, September 2017, pp. 207210.
    20. 20)
      • 13. Kumara, S., Ma, B., Serdyuk, Y.V., et al: ‘Surface charge decay on HTV silicone rubber: effect of material treatment by corona discharges’, IEEE Trans. Dielectr. Electr. Insul., 2012, 19, (6), pp. 21892195.
    21. 21)
      • 2. Amin, M., Salman, M.: ‘Aging of polymeric insulators (an overview)’, Rev. Adv. Mater. Sci., 2006, 13, pp. 93116.
    22. 22)
      • 5. Wang, Z., Jia, Z.D., Fang, M.H., et al: ‘Absorption and permeation of water and aqueous solutions of high-temperature vulcanized silicone rubber’, IEEE Trans. Dielectr. Electr. Insul., 2016, 22, (6), pp. 33573365.
    23. 23)
      • 18. Henriksen, M.: ‘Material properties for non-ceramic outdoor insulation’. In state of the art report from WG D1.14 Cigre publication 255, 2001.
    24. 24)
      • 22. Hino, T.: ‘Thermally stimulated measurements in solid dielectrics’, IEEE Trans. Electr. Insul., 1986, 21, (6), pp. 10071010.
    25. 25)
      • 27. Thabet, A., Allam, M., Shaaban, S.A.: ‘Investigation on enhancing breakdown voltages of transformer oil nanofluids using multi-nanoparticles technique’, IET Gener. Transm. Distrib., 2018, 12, (5), pp. 11711176.
    26. 26)
      • 20. IEC 61245-2015. Artificial pollution tests on high-voltage insulators to be used in d.c. system. 2015.
    27. 27)
      • 9. IEEE Std C57.19.00TM-2004: ‘IEEE standard general requirements and test procedure for power apparatus bushings’, 2004.
    28. 28)
      • 16. Li, S.T., Li, Z., Huang, Y., et al: ‘Unraveling the ‘U-shaped’ dependence of surface flashover performance on the surface trap level’, IEEE Access, 2019, 7, pp. 180923180934.
    29. 29)
      • 19. Chen, Y., Cheng, Y.H., Tang, J.P., et al: ‘Experiments and simulations on influencing factors of pulsed surface flashover in vacuum’. Proc. of 9th Int. Conf. on Solid Dielectrics, Winchester, UK, August 2007, pp. 345348.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2020.0112
Loading

Related content

content/journals/10.1049/iet-gtd.2020.0112
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address