Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Direct prediction compensation strategy of unified power quality conditioner based on FCS–MPC

The finite control set model predictive control (FCS–MPC) has drawn considerable attention in the integrated control of the unified power quality conditioner (UPQC) due to the characteristics of high dynamic response, internal decoupling and multiple constraints. In this study, a new direct prediction compensation strategy (DPCS) based on FCS–MPC is proposed, which eliminates the harmonic detection algorithm, simplifies the UPQC controller structure and reduces the steady-state errors. By compensating for the time delay of FCS–MPC, the UPQC can mitigate the power quality problems more accurately and timely. The FCS–MPC value function can be with various constraints, which makes the UPQC suitable for more situations. Compared with the indirect prediction compensation strategy, the designed DPCS has better time-delay compensation effects, which can reduce the harmonic components of the user-side under transient disturbances. The simulation results show that the proposed compensation strategy can achieve better dynamic and steady-state performance on power quality problems such as voltage sags, swells, interruptions and harmonics.

References

    1. 1)
      • 29. Wang, F., Mei, X., Rodriguez, J., et al: ‘Model predictive control for electrical drive systems-an overview’, CES Transactions on Electrical Machines and Systems, 2017, 1, (3), pp. 219230.
    2. 2)
      • 15. Khadkikar, V.: ‘Enhancing electric power quality using UPQC: a comprehensive overview’, IEEE Trans. Power Electron., 2012, 27, (5), pp. 22842297.
    3. 3)
      • 5. Wang, R., Sun, Q., Ma, D., et al: ‘The small-signal stability analysis of the droop-controlled converter in electromagnetic timescale’, IEEE Trans. Sustain. Energy, 2019, 10, (3), pp. 14591469.
    4. 4)
      • 13. Nasiri, A.: ‘Digital control of three-phase series-parallel uninterruptible power supply systems’, IEEE Trans. Power Electron., 2007, 22, (4), pp. 11161127.
    5. 5)
      • 7. Nielsen, J.G., Newman, M., Nielsen, H., et al: ‘Control and testing of a dynamic voltage restorer (DVR) at medium voltage level’, IEEE Trans. Power Electron., 2004, 19, (3), pp. 806813.
    6. 6)
      • 9. Campanhol, L.B.G., Silva, S.A.O., Goedtel, A.: ‘Application of shunt active power filter for harmonic reduction and reactive power compensation in three-phase four-wire systems’, IET Power Electron., 2014, 7, (11), pp. 28252836.
    7. 7)
      • 10. Shuai, Z., Luo, A., Tu, C., et al: ‘New control method of injection-type hybrid active power filter’, IET Power Electron., 2011, 4, (9), pp. 10511057.
    8. 8)
      • 27. Campanhol, L.B.G., Silva, S.A.O., Oliveira, A.A., et al: ‘Single-stage three-phase grid-tied PV system with universal filtering capability applied to DG systems and AC microgrids’, IEEE Trans. Power Electron., 2017, 32, (12), pp. 91319142.
    9. 9)
      • 32. Kouro, S., Cortes, P., Vargas, R., et al: ‘Model predictive control-a simple and powerful method to control power converters’, IEEE Trans. Ind. Electron., 2009, 56, (6), pp. 18261838.
    10. 10)
      • 1. Herath, H.M.S.C., Gosbell, V.J., Perera, S.: ‘Power quality (PQ) survey reporting: discrete disturbance limits’, IEEE Trans. Power Deliv., 2005, 20, (2), pp. 851858.
    11. 11)
      • 18. Teke, A., Meral, M.E., Cuma, M.U., et al: ‘Open unified power quality conditioner with control based on enhanced phase locked loop’, IET Gener. Transm. Distrib., 2013, 7, (3), pp. 254264.
    12. 12)
      • 16. Trinh, Q., Lee, H.: ‘Improvement of unified power quality conditioner performance with enhanced resonant control strategy’, IET Gener. Transm. Distrib., 2014, 8, (12), pp. 21142123.
    13. 13)
      • 6. Hamad, M.S., Masoud, M.I., Williams, B.W.: ‘Medium-voltage 12-pulse converter: output voltage harmonic compensation using a series APF’, IEEE Trans. Ind. Electron., 2014, 61, (1), pp. 4352.
    14. 14)
      • 19. Kwan, K.H., So, P.L., Chu, Y.C.: ‘An output regulation-based unified power quality conditioner with Kalman filters’, IEEE Trans. Ind. Electron., 2012, 59, (11), pp. 42484262.
    15. 15)
      • 3. Heine, P., Lehtonen, M.: ‘Voltage sag distributions caused by power system faults’, IEEE Trans. Power Syst., 2003, 18, (4), pp. 13671373.
    16. 16)
      • 26. Modesto, R.A., Silva, S.A.O., Oliveira, A.A., et al: ‘A versatile unified power quality conditioner applied to three-phase four-wire distribution systems using a dual control strategy’, IEEE Trans. Power Electron., 2016, 31, (8), pp. 55035514.
    17. 17)
      • 14. Fujita, H., Akagi, H.: ‘The unified power quality conditioner: the integration of series- and shunt-active filters’, IEEE Trans. Power Electron., 1998, 13, (2), pp. 315322.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2020.0056
Loading

Related content

content/journals/10.1049/iet-gtd.2020.0056
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address