access icon free Study on the combined characteristics of UHF and optical signals induced by partial discharge at spacer surface in GIS

In this study, to improve the sensitivity and accuracy of the detection of surface partial discharge (PD) in gas insulation switchgears (GISs), a combination of ultra-high frequency (UHF) and optical methods is proposed based on an integrated sensor. The PD triggered by a fixed metal needle defect attached to the spacer is detected from PD inception to flashover in a real GIS. The characteristics of UHF and optical signals under different applied voltages are compared and analysed in terms of PD waveform, Phase Resolved Partial Discharge (PRPD) pattern, PD count and amplitude. The results show that the surface discharge process can be precisely divided into three stages according to the combined characteristics of the UHF and optical signals. The comparison of the two detection methods shows that the optical method can detect the weak avalanche PD under low voltage while UHF cannot, so it can detect more PDs than UHF method in an AC cycle. In addition, with the deterioration of solid insulation material, the amplitude of the optical signal increases significantly while the amplitude of the UHF signal only increases slightly.

Inspec keywords: UHF measurement; partial discharge measurement; avalanche photodiodes; photodetectors; optical sensors; gas insulated switchgear; UHF detectors

Other keywords: weak avalanche PD detection methods; PRPD pattern; GIS; fixed metal needle; UHF signal method; PD inception; surface partial discharge process; solid insulation material; spacer surface; PD waveform; optical signal method; gas insulation switchgears

Subjects: Photoelectric devices; Sensing and detecting devices; Charge measurement; Microwave circuits and devices; Microwave measurement techniques; Electrical instruments and techniques; Dielectric breakdown and discharges; Photodetectors

References

    1. 1)
      • 15. Antony, D., Punekar, G.S.: ‘Noniterative method for combined acoustic-electrical partial discharge source localization’, IEEE Trans. Power Deliv., 2018, 33, (4), pp. 16791688.
    2. 2)
      • 20. Schwarz, R., Muhr, M., Pack, S.: ‘Partial discharge detection in oil with optical methods’. IEEE Int. Conf. on Dielectric Liquids, Coimbra, Portugal, 2005, pp. 245248.
    3. 3)
      • 8. Qi, B., Li, C.R., Hao, Z., et al: ‘Surface discharge initiated by immobilized metallic particles attached to gas insulated substation insulators: process and features’, IEEE Trans. Dielectr. Electr. Insul., 2013, 20, (6), pp. 792800.
    4. 4)
      • 16. Tenbohlen, S., Pfeffer, A., Coenen, S.: ‘On-site experiences with multi-terminal IEC PD measurements, UHF PD measurements and acoustic PD localisation’. 2010 IEEE Int. Symp. on Electrical Insulation, San Diego, CA, 2010, pp. 15.
    5. 5)
      • 14. Li, P., Zhou, W., Yang, S., et al: ‘Method for partial discharge localisation in air-insulated substations’, IET Sci. Meas. Technol., 2017, 11, (3), pp. 331338.
    6. 6)
      • 7. Mansour, D.-E.A., Nishizawa, K., Kojima, H., et al: ‘Charge accumulation effects on time transition of partial discharge activity at GIS spacer defects’, IEEE Trans. Dielectr. Electr. Insul., 2010, 17, (1), pp. 247255.
    7. 7)
      • 5. Ji, H.-x., Li, C.-r., Ma, G.-m., et al: ‘Partial discharge occurrence induced by crack defect on GIS insulator operated at 1100 kV’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (4), pp. 22502257.
    8. 8)
      • 9. Qi, B., Li, C., Xing, Z., et al: ‘Partial discharge initiated by free moving metallic particles on GIS insulator surface: severity diagnosis and assessment’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (2), pp. 766774.
    9. 9)
      • 19. Judd, M.D., Farish, O., Hampton, B.F.: ‘The excitation of UHF signals by partial discharges in GIS’, IEEE Trans. Dielectr. Electr. Insul., 1996, 3, (2), pp. 213228.
    10. 10)
      • 11. Pearson, J.S., Farish, O., Hampton, B.F., et al: ‘Partial discharge diagnostics for gas insulated substations’, IEEE Trans. Dielectr. Electr. Insul., 1995, 2, (5), pp. 893905.
    11. 11)
      • 23. Li, J., Han, X., Liu, Z., et al: ‘A novel GIS partial discharge detection sensor with integrated optical and UHF methods’, IEEE Trans. Power Deliv., 2018, 33, (4), pp. 20472049.
    12. 12)
      • 24. Han, X., Li, J., Zhang, L., et al: ‘A novel PD detection technique for use in GIS based on a combination of UHF and optical sensors’, IEEE Trans. Instrum. Meas., 2019, 68, (8), pp. 28902897.
    13. 13)
      • 1. CIGRE Working Group 33/32-12: ‘Insulation co-ordination of GIS: return of experience, on site tests and diagnostic techniques’, Electra, 1998, 176, (2), pp. 6795.
    14. 14)
      • 3. Mansour, D.E.A., Kojima, H., Hayakawa, N.: ‘Influence of accumulated surface charges on partial discharge activity at micro gap delamination in epoxy GIS spacer’. the IEEE Int. Conf. on Properties & Applications of Dielectric Materials, Harbin, People's Republic of China, 2009.
    15. 15)
      • 2. Sabot, A., Petit, A., Taillebois, J.P.: ‘GIS insulation co-ordination: on-site tests and dielectric diagnostic techniques, a utility point of view’, IEEE Trans. Power Deliv., 1996, 11, (3), pp. 13091316.
    16. 16)
      • 17. Bach, R., Epple, C., Mansheim, P., et al: ‘Comparative investigations using UHF and conventional PD-measuring equipment for the detection of artificial failures in a 110-kV-XLPE-cable termination’. 2018 12th Int. Conf. on the Properties and Applications of Dielectric Materials (ICPADM), Xi'an, 2018, pp. 6367.
    17. 17)
      • 25. Fujii, K., Yamada, M., Tananka, A., et al: ‘Emission spectrum of partial discharge light in SF6 gas’, IEEE J. Mag., 1992, 7, (10), pp. 332335.
    18. 18)
      • 21. Lee, C., Kalar, K., Sallee, B., et al: ‘Fiber optic fluorescent sensor for electric discharge detection’. Optical Fiber Sensors, Cancun, Mexico, 2006.
    19. 19)
      • 6. Li, J., Zhang, L., Liang, J., et al: ‘Partial discharge characteristics over SF6/epoxy interfaces under impulse voltage’, IEEE Trans. Dielectr. Electr. Insul., 2013, 20, (6), pp. 21582164.
    20. 20)
      • 22. Jiagui, T., Jinggang, Y., Gaoxiang, Y., et al: ‘A system using fluorescent fiber for partial discharge detection in transformer’. 2016 IEEE Int. Conf. on High Voltage Engineering and Application (ICHVE), Chengdu, People's Republic of China, 2016, pp. 14.
    21. 21)
      • 10. Qi, B., Li, C., Geng, B., et al: ‘Severity diagnosis and assessment of the partial discharge provoked by high-voltage electrode protrusion on GIS insulator surface’, IEEE Trans. Dielectr. Electr. Insul., 2011, 26, (4), pp. 23632369.
    22. 22)
      • 12. Koo, J.Y., Jung, S.Y., Ryu, C.H., et al: ‘Identification of insulation defects in gas-insulated switchgear by chaotic analysis of partial discharge’, IET Sci. Meas. Technol., 2010, 4, (3), pp. 115124.
    23. 23)
      • 18. Wenger, P., Beltle, M., Tenbohlen, S., et al: ‘Combined characterization of free-moving particles in HVDC-GIS using UHF PD, high-speed imaging, and pulse-sequence analysis’, IEEE Trans. Power Deliv., 2019, 34, (4), pp. 15401548.
    24. 24)
      • 4. Sellars, A.G., Farish, O., Hampton, B.F., et al: ‘Characterising the discharge development due to surface contamination in GIS using the UHF technique’, IEE Proc., Sci. Meas. Technol., 1994, 141, (2), pp. 118122.
    25. 25)
      • 13. Florkowska, B., Florkowski, M., Roehrich, J., et al: ‘Partial discharge mechanism in non-homogenous electric field at high pressure’, IET Sci. Meas. Technol., 2011, 5, (2), pp. 5966.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2019.1953
Loading

Related content

content/journals/10.1049/iet-gtd.2019.1953
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading