Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Performance improvement of DFIG-based wind farms using NARMA-L2 controlled bridge-type flux coupling non-superconducting fault current limiter

Doubly-fed induction generators (DFIGs) have drawn prominent interest in the field of wind power generation, but they are vulnerable to grid faults. Grid codes mandate DFIGs to employ a sort of fault ride-through (FRT) technique during faults. Fault current limiters (FCLs) always help to augment the FRT capability of DFIGs and a non-linear controller boosts their performances. In this study, a non-linear auto-regressive moving average-L2 (NARMA-L2) controller-based bridge-type flux coupling non-superconducting FCL (BFC-NSFCL) is proposed to enhance the FRT capability of the wind farm. The authors analysed the performance of the proposed NARMA-L2-based BFC-NSFCL (NL2-BFC-NSFCL) against that of the conventionally used series dynamic braking resistor (SDBR), bridge-type FCL (BFCL), and proportional–integral (PI) controller-based BFC-NSFCL (PI-BFC-NSFCL). They tested the performance of the NL2-BFC-NSFCL through multiple temporary and permanent fault scenarios and carried out the mathematical and graphical analysis in MATLAB/Simulink platform. They found that the proposed NL2-BFC-NSFCL's performance surpasses the performances of the SDBR, the BFCL, and the PI-BFC-NSFCL. Moreover, the NL2-BFC-NSFCL has faster system recovery capability after the occurrence of any fault than other competitors.

References

    1. 1)
      • 49. Lopez, J., Sanchis, P., Roboam, X., et al: ‘Dynamic behavior of the doubly fed induction generator during three-phase voltage dips’, IEEE Trans. Energy Convers., 2007, 22, (3), pp. 709717.
    2. 2)
      • 5. Tohidi, S., Behnam, M.i.: ‘A comprehensive review of low voltage ride through of doubly fed induction wind generators’, Renew. Sustain. Energy Rev., 2016, 57, pp. 412419.
    3. 3)
      • 23. Zou, Z.C., Xiao, X.Y., Liu, Y.F., et al: ‘Integrated protection of DFIG-based wind turbine with a resistive-type SFCL under symmetrical and asymmetrical faults’, IEEE Trans. Appl. Supercond., 2016, 26, (7), pp. 15, Art. no. 5603005.
    4. 4)
      • 54. Li, C., Xu, W., Tayjasanant, T.: ‘Interharmonics: basic concepts and techniques for their detection and measurement’, Electr. Power Syst. Res., 2003, 66, (1), pp. 3948.
    5. 5)
      • 15. Muyeen, S., Takahashi, R., Murata, T., et al: ‘Low voltage ride through capability enhancement of wind turbine generator system during network disturbance’, IET Renew. Power Gener., 2009, 3, (1), pp. 6574.
    6. 6)
      • 24. Islam, M.R., Abir, D.D., Islam, M.R., et al: ‘Enhancement of FRT capability of DFIG based wind farm by a hybrid superconducting fault current limiter with bias magnetic field’. 2020 IEEE Int. Conf. on Power Electronics, Smart Grid and Renewable Energy (PESGRE2020), Cochin, India, 2020, pp. 16.
    7. 7)
      • 6. Xiang, D., Ran, L., Tavner, P.J., et al: ‘Control of a doubly fed induction generator in a wind turbine during grid fault ride-through’, IEEE Trans. Energy Convers., 2006, 21, (3), pp. 652662.
    8. 8)
      • 34. Chen, L., Deng, C., Zheng, F., et al: ‘Fault ride-through capability enhancement of DFIG-based wind turbine with a flux-coupling-type SFCL employed at different locations’, IEEE Trans. Appl. Supercond., 2014, 25, (3), pp. 15, Art. no. 5201505.
    9. 9)
      • 9. Zheng, Z.X., Huang, C.J., Yang, R.H., et al: ‘A low voltage ride through scheme for DFIG-based wind farm with SFCL and RSC control’, IEEE Trans. Appl. Supercond., 2019, 29, (2), pp. 15.
    10. 10)
      • 19. Radmanesh, H., Fathi, S.H., Gharehpetian, G., et al: ‘Bridge-type solid-state fault current limiter based on AC/DC reactor’, IEEE Trans. Power Deliv., 2015, 31, (1), pp. 200209.
    11. 11)
      • 56. Golshannavaz, S., Aminifar, F., Nazarpour, D.: ‘Application of UPFC to enhancing oscillatory response of series-compensated wind farm integrations’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 19611968.
    12. 12)
      • 30. Rashid, G., Ali, M.H.: ‘Transient stability enhancement of doubly fed induction machine-based wind generator by bridge-type fault current limiter’, IEEE Trans. Energy Convers., 2015, 30, (3), pp. 939947.
    13. 13)
      • 8. Xiao, S., Yang, G., Zhou, H., et al: ‘An LVRT control strategy based on flux linkage tracking for DFIG-based WECS’, IEEE Trans. Ind. Electron., 2012, 60, (7), pp. 28202832.
    14. 14)
      • 26. Qu, L., Zeng, R., Yu, Z., et al: ‘Design and test of a magnetic saturation-type fault current limiter’, J. Eng., 2019, 2019, (16), pp. 29742979.
    15. 15)
      • 29. Okedu, K.E., Muyeen, S., Takahashi, R., et al: ‘Wind farms fault ride through using DFIG with new protection scheme’, IEEE Trans. Sustain. Energy, 2012, 3, (2), pp. 242254.
    16. 16)
      • 57. Pei, X., Smith, A.C., Barnes, M.: ‘Superconducting fault current limiters for HVDC systems’, Energy Procedia, 2015, 80, pp. 4755.
    17. 17)
      • 46. Sarcheshmeh, S.F., Esmaelzadeh, R., Afshari, M.: ‘Chaotic satellite synchronization using neural and nonlinear controllers’, Chaos Solitons Fractals, 2017, 97, pp. 1927.
    18. 18)
      • 21. Tseng, H.T., Jiang, W.Z., Lai, J.S.: ‘A modified bridge switch-type flux-coupling nonsuperconducting fault current limiter for suppression of fault transients’, IEEE Trans. Power Deliv., 2018, 33, (6), pp. 26242633.
    19. 19)
      • 36. Islam, M.R., Huda, M.N., Hasan, J., et al: ‘Fault ride through capability improvement of DFIG based wind farm using nonlinear controller based bridge-type flux coupling non-superconducting fault current limiter’, Energies, 2020, 13, (7), p. 1696.
    20. 20)
      • 4. Hu, J., Wang, B., Wang, W., et al: ‘Small signal dynamics of DFIG-based wind turbines during riding through symmetrical faults in weak AC grid’, IEEE Trans. Energy Convers., 2017, 32, (2), pp. 720730.
    21. 21)
      • 10. Zhu, D., Zou, X., Deng, L., et al: ‘Inductance-emulating control for DFIG-based wind turbine to ride-through grid faults’, IEEE Trans. Power Electron., 2016, 32, (11), pp. 85148525.
    22. 22)
      • 40. Hossain, M.K., Ali, M.H.: ‘Transient stability augmentation of PV/DFIG/SG-based hybrid power system by nonlinear control-based variable resistive FCL’, IEEE Trans. Sustain. Energy, 2015, 6, (4), pp. 16381649.
    23. 23)
      • 41. Rashid, G., Ali, M.H.: ‘Nonlinear control-based modified BFCL for LVRT capacity enhancement of DFIG-based wind farm’, IEEE Trans. Energy Convers., 2016, 32, (1), pp. 284295.
    24. 24)
      • 55. Virulkar, V., Gotmare, G.: ‘Sub-synchronous resonance in series compensated wind farm: a review’, Renew. Sustain. Energy Rev., 2016, 55, pp. 10101029.
    25. 25)
      • 47. Manonmani, A., Thyagarajan, T., Elango, M., et al: ‘Modelling and control of greenhouse system using neural networks’, Trans. Inst. Meas. Control, 2018, 40, (3), pp. 918929.
    26. 26)
      • 32. Rashid, G., Ali, M.H.: ‘Fault ride through capability improvement of DFIG based wind farm by fuzzy logic controlled parallel resonance fault current limiter’, Electr. Power Syst. Res., 2017, 146, pp. 18.
    27. 27)
      • 38. Sadi, M.A.H., Ali, M.H.: ‘A fuzzy logic controlled bridge type fault current limiter for transient stability augmentation of multi-machine power system’, IEEE Trans. Power Syst., 2015, 31, (1), pp. 602611.
    28. 28)
      • 7. Döşoğlu, M.K., Güvenç, U., Sönmez, Y., et al: ‘Enhancement of demagnetization control for low-voltage ride-through capability in DFIG-based wind farm’, Electr. Eng., 2018, 100, (2), pp. 491498.
    29. 29)
      • 14. Liu, J., Yao, W., Fang, J., et al: ‘Stability analysis and energy storage-based solution of wind farm during low voltage ride through’, Int. J. Electr. Power Energy Syst., 2018, 101, pp. 7584.
    30. 30)
      • 33. Sadi, M.A.H., AbuHussein, A., Shoeb, M.A.: ‘Transient performance improvement of power systems using fuzzy logic controlled capacitive-bridge type fault current limiter’, IEEE Trans. Power Syst., 2020, 36, (1), pp. 323335.
    31. 31)
      • 3. Justo, J.J., Mwasilu, F., Jung, J.W.: ‘Doubly-fed induction generator based wind turbines: a comprehensive review of fault ride-through strategies’, Renew. Sustain. Energy Rev., 2015, 45, pp. 447467.
    32. 32)
      • 20. Alam, M., Abido, M., El-Amin, I.: ‘Fault current limiters in power systems: a comprehensive review’, Energies, 2018, 11, (5), p. 1025.
    33. 33)
      • 50. Narayana, M., Sunderland, K.M., Putrus, G., et al: ‘Adaptive linear prediction for optimal control of wind turbines’, Renew. Energy, 2017, 113, pp. 895906.
    34. 34)
      • 31. Rashid, G., Ali, M.H.: ‘Application of parallel resonance fault current limiter for fault ride through capability augmentation of DFIG based wind farm’. 2016 IEEE/PES Transmission and Distribution Conf. and Exposition (T&D), Dallas, TX, 2016, pp. 15.
    35. 35)
      • 17. Döşoğlu, M.K.: ‘Enhancement of SDRU and RCC for low voltage ride through capability in DFIG based wind farm’, Electr. Eng., 2017, 99, (2), pp. 673683.
    36. 36)
      • 28. Naderi, S., Davari, P., Zhou, D., et al: ‘A review on fault current limiting devices to enhance the fault ride-through capability of the doubly-fed induction generator based wind turbine’, Appl. Sci., 2018, 8, (11), p. 2059.
    37. 37)
      • 45. Islam, M.R., Hasan, J., Shipon, M.R.R., et al: ‘Neuro fuzzy logic controlled parallel resonance type fault current limiter to improve the fault ride through capability of DFIG based wind farm’, IEEE Access, 2020, 8, pp. 115314115334.
    38. 38)
      • 12. Wessels, C., Gebhardt, F., Fuchs, F.W.: ‘Fault ride-through of a DFIG wind turbine using a dynamic voltage restorer during symmetrical and asymmetrical grid faults’, IEEE Trans. Power Electron., 2010, 26, (3), pp. 807815.
    39. 39)
      • 51. Al-Dunainawi, Y., Abbod, M.F., Jizany, A.: ‘A new MIMO ANFIS-PSO based NARMA-L2 controller for nonlinear dynamic systems’, Eng. Appl. Artif. Intell., 2017, 62, pp. 265275.
    40. 40)
      • 37. Islam, M.R., Hasan, J., Huda, M.N., et al: ‘Fault ride through capability improvement of DFIG based wind farms using active power controlled bridge type fault current limiter’. 2019 North American Power Symp. (NAPS), Wichita, KS, USA, 2019, pp. 16.
    41. 41)
      • 18. Döşoğlu, M.K.: ‘A new approach for low voltage ride through capability in DFIG based wind farm’, Int. J. Electr. Power Energy Syst., 2016, 83, pp. 251258.
    42. 42)
      • 44. Hongesombut, K., Mitani, Y., Tsuji, K.: ‘Optimal location assignment and design of superconducting fault current limiters applied to loop power systems’, IEEE Trans. Appl. Supercond., 2003, 13, (2), pp. 18281831.
    43. 43)
      • 53. Wang, T., Choi, S., Sng, E.: ‘Series compensation method to mitigate harmonics and voltage sags and swells’, IET. Gener. Transm. Distrib., 2007, 1, (1), pp. 96103.
    44. 44)
      • 43. Sadi, M.A.H., Ali, M.H.: ‘Distribution protective relay coordination by sliding mode control based bridge type fault current limiter’. IEEE Power and Energy Society General Meeting, Atlanta, GA, USA, 2019.
    45. 45)
      • 42. Sadi, M.A.H., Ali, M.H.: ‘Lyapunov function controlled parallel resonance fault current limiter for transient stability enhancement of power system’. 2018 North American Power Symp. (NAPS), Fargo, ND, 2018, pp. 16.
    46. 46)
      • 13. Qiao, W., Venayagamoorthy, G.K., Harley, R.G.: ‘Real-time implementation of a STATCOM on a wind farm equipped with doubly fed induction generators’, IEEE Trans. Ind. Appl., 2009, 45, (1), pp. 98107.
    47. 47)
      • 48. Rashid, G., Ali, M.H.: ‘A modified bridge-type fault current limiter for fault ride-through capacity enhancement of fixed speed wind generator’, IEEE Trans. Energy Convers., 2014, 29, (2), pp. 527534.
    48. 48)
      • 27. Yuan, J., Zhong, Y., Lei, Y., et al: ‘A novel hybrid saturated core fault current limiter topology considering permanent magnet stability and performance’, IEEE Trans. Magn., 2017, 53, (6), pp. 14.
    49. 49)
      • 25. Ngamroo, I.: ‘Optimization of SMES-FCL for augmenting FRT performance and smoothing output power of grid-connected DFIG wind turbine’, IEEE Trans. Appl. Supercond., 2016, 26, (7), pp. 15, Art. no. 3800405.
    50. 50)
      • 1. Owusu, P.A., Asumadu-Sarkodie, S.: ‘A review of renewable energy sources, sustainability issues and climate change mitigation’, Cogent Eng., 2016, 3, (1), p. 1167990.
    51. 51)
      • 39. Sadi, M.A.H., Zheng, H., Ali, M.H.: ‘Transient stability enhancement of power grid by neural network controlled BFCL considering cyber-attacks’. SoutheastCon 2017 (IEEE), Charlotte, NC, 2017, pp. 18.
    52. 52)
      • 22. Yang, Q., Le-Blond, S., Liang, F., et al: ‘Design and application of superconducting fault current limiter in a multiterminal HVDC system’, IEEE Trans. Appl. Supercond., 2017, 27, (4), pp. 15, Art. no. 3800805.
    53. 53)
      • 52. Hagan, M., Demuth, H., Beale, M., et al: ‘Neural network design’ (Oklahoma State University, Stillwater, Oklahoma, 2014, 2nd edn.).
    54. 54)
      • 16. Islam, M.R., Ajom, M.G., Sheikh, M.: ‘Application of DC chopper to augment fault ride through of DFIG based wind turbine’. 2017 2nd Int. Conf. on Electrical & Electronic Engineering (ICEEE)., Rajshahi, Bangladesh, 2017, pp. 14.
    55. 55)
      • 2. Cardenas, R., Peña, R., Alepuz, S., et al: ‘Overview of control systems for the operation of DFIGs in wind energy applications’, IEEE Trans. Ind. Electron., 2013, 60, (7), pp. 27762798.
    56. 56)
      • 11. D&oşoğlu, M.K.: ‘Crowbar hardware design enhancement for fault ride through capability in doubly fed induction generator-based wind turbines’, ISA Trans., 2020, 104, pp. 321328.
    57. 57)
      • 35. Chen, L., Chen, H., Yang, J., et al: ‘Conceptual design and performance evaluation of a 35-kV/500-A flux-coupling-type SFCL for protection of a DFIG-based wind farm’, IEEE Trans. Appl. Supercond., 2017, 28, (3), pp. 17, Art. no. 5200607.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2019.1917
Loading

Related content

content/journals/10.1049/iet-gtd.2019.1917
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address