access icon free Improved practical method for low-inertia VSC-HVDC stability analysis in weak system

The physical mechanism of the instability of the low-inertia voltage source converter (VSC) caused by the phase-locked loop (PLL) in a weak system is clearly revealed in a simplified way. Based on the complex torque method, the joint influence of the PLL and the system strength on the VSC is studied through the defined key stable component. To keep the VSC stable, the value of the key stable component must be positive. The component is decided by AC voltage, short-circuit-ratio (SCR), reactive power, and PLL parameters. Improper PLL parameters and weak AC system could make the key stable component negative. To keep the VSC stable in a weak system, the PLL parameters can be adjusted according to the curve of the key stable component, which means suitably decreasing k p and increasing k i. Finally, simulations are implemented to validate the theory, which matches well with the findings.

Inspec keywords: phase locked loops; power system stability; power transmission control; HVDC power transmission; HVDC power convertors

Other keywords: improper PLL parameters; defined key stable component; weak AC system; complex torque method; Low-inertia VSC-HVDC stability analysis; AC voltage; improved practical method; VSC stable; low-inertia voltage source converter; weak system; physical mechanism; key stable component negative; system strength; phase-locked loop; reactive power

Subjects: Stability in control theory; Power convertors and power supplies to apparatus; Control of electric power systems; d.c. transmission; Modulators, demodulators, discriminators and mixers; Power system control

References

    1. 1)
      • 19. Shen, Y., Yao, W., Wen, J., et al: ‘Adaptive supplementary damping control of VSC-HVDC for interarea oscillation using GrHDP’. 2018 IEEE Power & Energy Society General Meeting (PESGM), Portland, OR, 2018, pp. 11.
    2. 2)
      • 14. Wang, X., Blaabjerg, F., Loh, P.C.: ‘Passivity-based stability analysis and damping injection for multiparalleled VSCs with LCL filters’, IEEE Trans. Power Electron., 2017, 32, (11), pp. 89228935.
    3. 3)
      • 20. Heffron, W.G., Phillips, R.A.: ‘Effect of a modern amplidyne voltage regulator on underexcited operation of large turbine generators’, Trans. Am. Inst. Electr. Eng. III, Power Appar. Syst., 1952, 71, (1), pp. 692697.
    4. 4)
      • 4. Debnath, S., Qin, J., Bahrani, B., et al: ‘Operation, control, and applications of the modular multilevel converter: a review’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 3753.
    5. 5)
      • 16. Du, W., Fu, Q., Wang, H.: ‘Method of open-loop modal analysis for examining the subsynchronous interactions introduced by VSC control in an MTDC/AC system’, IEEE Trans. Power Deliv., 2018, 33, (2), pp. 840850.
    6. 6)
      • 11. Khalil, H.K.: ‘Nonlinear systems, (Prentice-Hall, New Jersey 07458, 1996, 3rd edn.), ch. 6, pp. 241245.
    7. 7)
      • 6. Zhou, J.Z., Ding, H., Fan, S., et al: ‘Impact of short-circuit ratio and phase-locked-loop parameters on the small-signal behavior of a VSC-HVDC converter’, IEEE Trans. Power Deliv., 2014, 29, (5), pp. 22872296.
    8. 8)
      • 12. Lyu, J., Cai, X., Molinas, M.: ‘Impedance modeling of modular multilevel converters’. IECON 2015 - 41st Annual Conf. of the IEEE Industrial Electronics Society, Yokohama, November 2015, pp. 000180000185.
    9. 9)
      • 7. Huang, Y., Yuan, X., Hu, J., et al: ‘Modeling of VSC connected to weak grid for stability analysis of DC-link voltage control’, IEEE J. Emerging Sel. Topics Power Electron., 2015, 3, (4), pp. 11931204.
    10. 10)
      • 21. Kundur, P., Balu, N.J., Lauby, M.G.: ‘Power system stability and Control' (McGraw-Hill Professional, New York, 1994), Chap. 12.
    11. 11)
      • 23. Liu, Q.: ‘Stability of power system and generator excitation Control' (China Power Press, Beijin, 2007), Chap. 5.
    12. 12)
      • 17. Beerten, J., D'Arco, S., Suul, J.A.: ‘Identification and small-signal analysis of interaction modes in VSC MTDC systems’, IEEE Trans. Power Deliv., 2016, 31, (2), pp. 888897.
    13. 13)
      • 1. Oni, O.E., Davidson, I.E., Mbangula, K.N.I.: ‘A review of LCC-HVDC and VSC-HVDC technologies and applications’. 2016 IEEE 16th Int. Conf. on Environment and Electrical Engineering (EEEIC), Florence, 2016, pp. 17.
    14. 14)
      • 25. Canay, I.M.: ‘A novel approach to the torsional interaction and electrical damping of the synchronous machine part I: theory’, IEEE Trans. Power Appar. Syst., 1982, PAS-101, (10), pp. 36303638.
    15. 15)
      • 24. Yazdani, A., Iravani, R.: ‘Voltage-sourced converters in power systems: modeling, control, and applications' (John Wiley & Sons Press, New Jersey, 2010).
    16. 16)
      • 9. Midtsund, T., Suul, J.A., Undeland, T.: ‘Evaluation of current controller performance and stability for voltage source converters connected to a weak grid’. the 2nd Int. Symp. on Power Electronics for Distributed Generation Systems, June, 2010, pp. 382388.
    17. 17)
      • 29. Tabesh, A., Iravani, R.: ‘On the application of the complex torque coefficients method to the analysis of torsional dynamics’, IEEE Trans. Energy Convers., 2005, 20, (2), pp. 268275.
    18. 18)
      • 28. Wang, H.: ‘A unified model for the analysis of FACTS devices in damping power system oscillations. III. Unified power flow controller’, IEEE Trans. Power Deliv., 2000, 15, (3), pp. 978983.
    19. 19)
      • 8. Yuan, B, Li, T, Xu, J, et al: ‘Small-signal stability analysis of modular-multilevel-converter connected to weak system’, Proc. CSEE, 2017, 37, (1), pp. 112.
    20. 20)
      • 30. Hu, J., Wang, B., Wang, W., et al: ‘Small signal dynamics of DFIG-based wind turbines during riding through symmetrical faults in weak AC grid’, IEEE Trans. Energy Convers., 2017, 32, (2), pp. 720730.
    21. 21)
      • 3. Davies, J.B.: ‘Systems with multiple DC infeed’, ELECTRA-CIGRE, 2007, 233, p. 14.
    22. 22)
      • 26. Gibbard, M.J.: ‘Co-ordinated design of multi-machine power system stabilisers based on damping torque concepts’, IEE Proc. C, Gener. Transm. Distrib., 1988, 135, (4), pp. 276284.
    23. 23)
      • 5. Zhou, J.Z., Gole, A.M.: ‘VSC transmission limitations imposed by AC system strength and AC impedance characteristics’. 10th IET Int. Conf. on AC and DC Power Transmission (ACDC 2012), Birmingham, UK, July 2012, pp. 16.
    24. 24)
      • 22. Pinares, G., Tjernberg, L.B., Tuan, L.A., et al: ‘On the analysis of the dc dynamics of multi-terminal VSC-HVDC systems using small signal modeling’. 2013 IEEE Grenoble Conf., Grenoble, June, 2013, pp. 16.
    25. 25)
      • 2. Rahman, M.H., Xu, L., Yao, L.Z.: ‘Protection of large partitioned MTDC networks using DC-DC converters and circuit breakers’, Prot. Control Mod. Power Syst., 2016, 1, pp. 170178..
    26. 26)
      • 18. Dewangan, L.K., Bahirat, H.J.: ‘Controller interaction and stability margins in mixed SCR VSC based HVDC grid’, IEEE Trans. Power Syst., 2020, 34, pp. 41544167.
    27. 27)
      • 27. Pourbeik, P., Gibbard, M.J.: ‘Damping and synchronizing torques induced on generators by FACTS stabilizers in multimachine power systems’, IEEE Trans. Power Syst., 1996, 11, (4), pp. 19201925.
    28. 28)
      • 15. Gu, Y., Li, W., He, X.: ‘Passivity-based control of DC microgrid for self-disciplined stabilization’, IEEE Trans. Power Syst., 2015, 30, (5), pp. 26232632.
    29. 29)
      • 10. Harnefors, L., Bongiorno, M., Lundberg, S.: ‘Input-admittance calculation and shaping for controlled voltage-source converters’, IEEE Trans. Ind. Electron., 2007, 54, (6), pp. 33233334.
    30. 30)
      • 13. Sun, J., Liu, H.: ‘Impedance modeling and analysis of modular multilevel converters’. 2016 IEEE 17th Workshop on Control and Modeling for Power Electronics (COMPEL), Trondheim, 2016, pp. 19.
    31. 31)
      • 31. IEEE Guide for Planning DC Links Terminating at AC Locations Having Low Short-Circuit Capacities’, in IEEE Std 1204-1997, 21 Jan. 1997, vol., no., pp.1–216.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2019.1887
Loading

Related content

content/journals/10.1049/iet-gtd.2019.1887
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading