Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Performance of SMES system with non-linear dynamic evolution control approach for pulsed power load compensation

Superconducting magnetic energy storage (SMES) system is one of the efficient pulsed power compensators. Its response to the load fluctuations is faster and competent. This study proposes a non-linear dynamic evolution control (NDEC) approach for SMES system. The control approach is implemented to regulate the error of three-phase compensating current and DC-link voltage. The control functions required for voltage source inverter (VSI) and bi-directional DC–DC converter of the SMES system are derived using the NDEC control approach. A proportional–integral (PI) controller is replaced by the NDEC in the inner loop of a traditional pulse-width-modulation control strategy of VSI for the quick response and effective energy exchange. The elementary idea of implementing NDEC is to govern the system dynamics by maintaining a zero-error state irrespective of load uncertainties quickly. Detrimental high rating stress on the system due to pulsed power load is substantially reduced with the proposed NDEC strategy. Source current is maintained almost balanced and harmonic-free in order to ensure a quality and reliable supply to surrounding loads. The variation in source current is drastically reduced from 260 to 6% using the proposed system. Moreover, a comparative study between PI and NDEC-based control scheme is presented using MATLAB simulation and experimental results.

References

    1. 1)
      • 15. Chen, H., Zhao, H.: ‘Review on pulse-width modulation strategies for common-mode voltage reduction in three-phase voltage-source inverters’, IET Power Electron, 2016, 9, (14), pp. 26112620.
    2. 2)
      • 20. Soares, V., Verdelho, P., Marques, G.D.: ‘An instantaneous active and reactive current component method for active filters’, IEEE Trans. Power Electron., 2000, 15, (4), pp. 660669.
    3. 3)
      • 8. Chen, L., Liu, Y., Arsoy, A., et al: ‘Detailed modeling of superconducting magnetic energy storage (SMES) system’, IEEE Trans. Power Deliv., 2006, 21, (2), pp. 699710.
    4. 4)
      • 16. Crider, J.M., Sudhoff, S.D.: ‘Reducing impact of pulsed power loads on microgrid power systems’, IEEE Trans Smart Grid, 2010, 1, (3), pp. 270277.
    5. 5)
      • 6. Jin, Y.S., Kim, Y.B., Kim, J.S., et al: ‘A 4.8-MJ pulsed-power system for electromagnetic launcher experiment’, IEEE Trans. Plasma Sci., 2015, 43, (10), pp. 33693373.
    6. 6)
      • 4. Bluhm, H.: ‘Pulsed power systems principles and applications’ (Springer-Verlag Berlin Heidel-berg, New York, 2006).
    7. 7)
      • 3. Li, Y., Liu, Q., Hu, S., et al: ‘A virtual impedance comprehensive control strategy for the controllably inductive power filtering system’, IEEE Trans. Power Electron., 2017, 32, (2), pp. 920926.
    8. 8)
      • 17. Panda, A.K., Mohanty, P.R., Patnaik, N., et al: ‘Closed-loop-controlled cascaded current-controlled dynamic evolution control-based voltage-doubler PFC converter for improved dynamic performance’, IEEE J Emerging Sel Topics Power Electron, 2018, 6, (4), pp. 18841891.
    9. 9)
      • 19. Du, X., Gu, S., Wang, G., et al: ‘Simple current control method for three-phase VSC under unbalanced grid condition’, IET Power Electron, 2018, 11, (7), pp. 11611168.
    10. 10)
      • 1. Elphick, S., Ciufo, P., Drury, G., et al: ‘Large scale proactive power-quality monitoring: an example from Australia’, IEEE Trans. Power Deliv., 2017, 32, (2), pp. 881889.
    11. 11)
      • 12. Gao, S., Chau, K.T., Liu, C., et al: ‘SMES control for power grid integrating renewable generation and electric vehicles’, IEEE Trans. Appl. Supercond., 2012, 22, (3), pp. 57018045701804.
    12. 12)
      • 11. Ngamroo, I., Vachirasricirikul, S.: ‘Design of optimal SMES controller considering SOC and robustness for microgrid stabilization’, IEEE Trans. Appl. Supercond., 2016, 26, (7), pp. 15.
    13. 13)
      • 2. Liu, Q., Li, Y., Luo, L., et al: ‘Power quality management of PV power plant with transformer integrated filtering method’, IEEE Trans. Power Deliv., 2019, 34, (3), pp. 941949.
    14. 14)
      • 7. Panda, A.K., Penthia, T.: ‘Design and modeling of SMES based SAPF for pulsed power load demands’, Int. J. Electr. Power Energy Syst., 2017, 92, pp. 114124.
    15. 15)
      • 14. Chandra, A., Singh, B., Singh, B.N., et al: ‘An improved control algorithm of shunt active filter for voltage regulation, harmonic elimination, power-factor correction, and balancing of nonlinear loads’, IEEE Trans. Power Electron., 2000, 15, (3), pp. 495507.
    16. 16)
      • 5. Mehlhorn, T.A.: ‘National security research in plasma physics and pulsed power: past, present, and future’, IEEE Trans. Plasma Sci., 2014, 42, (5), pp. 10881117.
    17. 17)
      • 21. Rahmani, S., Mendalek, N., Al-Haddad, K.: ‘Experimental design of a nonlinear control technique for three-phase shunt active power filter’, IEEE Trans. Ind. Electron., 2010, 57, (10), pp. 33643375.
    18. 18)
      • 9. Boom, R.W., Peterson, H.A.: ‘Superconductive energy storage for power systems’, IEEE Trans. Magn., 1972, MAG-8, (3), pp. 701703.
    19. 19)
      • 13. Chen, X.Y., Jin, J.X., Xin, Y., et al: ‘Integrated SMES technology for modern power system and future smart grid’, IEEE Trans. Appl. Supercond., 2014, 24, (5), pp. 15.
    20. 20)
      • 10. Ali, M.H., Wu, B., Dougal, R.A.: ‘An overview of SMES applications in power and energy systems’, IEEE Trans Sustain Energy, 2010, 1, (1), pp. 3847.
    21. 21)
      • 18. Penthia, T., Panda, A.K., Sarangi, S.K.: ‘Implementing dynamic evolution control approach for DC-link voltage regulation of superconducting magnetic energy storage system’, Int. J. Electr. Power Energy Syst., 2018, 95, pp. 275286.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2019.1880
Loading

Related content

content/journals/10.1049/iet-gtd.2019.1880
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address