access icon free Experimental analysis of the strands breaking characteristics of optical fibre composite overhead ground wire due to simulating lightning strike

With the increasing application of OPGW (optical fibre composite overhead ground wire) in power systems, the strands in OPGW are frequently broken due to lightning strikes. In this study, ten kinds of OPGW lightning-strike tolerance was tested according to the IEC standards. The influences of the following factors, such as transfer charge, tensile force, the diameter and material of OPGW outer layer strands, were analysed. The transfer charge and tensile force are positively proportional to the degree of lightning strike damage to OPGW. The diameters of OPGW outer layer strands are positively related to the lightning strike tolerance of OPGW. Compared with OPGW with aluminium alloy outer layer strands, lightning strikes tolerance of OPGW with aluminium clad steel (AS) outer layer strands is better. It suggested that the OPGW outer layer strands diameter >3.2 mm and with AS outer-layer strands shows good lightning strike tolerance. The mechanism of OPGW strands breaking was also analysed by the infrared detection, micro-morphology detection and energy spectrum. The experimental results of this study provide significant data support for OPGW type selection for lightning protection.

Inspec keywords: infrared detectors; power overhead lines; earthing; lightning protection; aluminium alloys

Other keywords: OPGW strands breaking; transfer charge; OPGW lightning-strike tolerance; OPGW type selection; tensile force; aluminium clad steel; outer layer strands; lightning strike damage; lightning strike tolerance; energy spectrum; infrared detection; aluminium alloy; AS outer-layer strands; lightning protection; OPGW outer layer strands; IEC standards; micromorphology detection; optical fibre composite overhead ground wire

Subjects: Power system protection; Electromagnetic compatibility and interference; Overhead power lines; Photodetectors

References

    1. 1)
      • 3. Goda, Y., Yokoyama, S., Watanabe, S., et alMelting and breaking characteristics of OPGW strands by lightning’, IEEE Trans. Power Deliv., 2004, 19, (4), pp. 17341739.
    2. 2)
      • 10. Urasawa, K., Kanemaru, K., Toyota, S., et al: ‘New fault location system for power transmission lines using composite fiber-optic overhead ground wire (OPGW)’, IEEE Trans. Power Deliv., 1989, 4, (4), pp. 20052011.
    3. 3)
      • 21. Lu, L., Yun, L., Li, B., et al: ‘Experimental study on location of lightning stroke on OPGW by means of a distributed optical fiber temperature sensor’, Opt. Laser Technol., 2015, 65, (9), pp. 7982.
    4. 4)
      • 20. Liu, Y.K., Dai, M.Q., Xiao, Y., et al: ‘Influence factors of metal materials struck by simulated lightning currents’, High Volt. Eng., 2017, 43, (5), pp. 5966.
    5. 5)
      • 14. Hu, Y., Ye, T.L., Wang, L.N., et al: ‘Strands breaking mechanism of optical fiber composite overhead ground wire caused by lightning stroke and corresponding preventive measures’, Power Syst. Technol., 2006, 16, pp. 7076, (in Chinese).
    6. 6)
      • 5. Wu, J.J., Li, Y.B., Duan, W.Y., et al: ‘Repair and maintenance method for lightning strike damage of 500 kV line overhead lightning protection line’, China Power, 2009, 42, (5), pp. 6467, (in Chinese).
    7. 7)
      • 6. Yokoya, M., Katsuragi, Y., Goda, Y., et al: ‘Development of lightning-resistant overhead ground wire’, IEEE Trans. Power Deliv., 1994, 9, (3), pp. 15171523.
    8. 8)
      • 16. Iwata, M., Ohtaka, T., Kuzuma, Y., et al: ‘Development of a method of calculating the melting characteristics of OPGW strands due to DC arc simulating lightning strike’, Trans. Power Deliv., 2013, 28, (3), pp. 13141321.
    9. 9)
      • 1. Chowdhuri, P.: ‘Parameters of lightning strokes and their effects on power systems’. Transmission and Distribution Conf. and Exposition, 2001 IEEE/PES, Atlanta, GA, USA, 2001.
    10. 10)
      • 18. Iwata, M., Ohtaka, T., Goda, Y.: ‘Melting and breaking of 80 mm2 OPGWs by DC arc discharge simulating lightning strike’. Int. Conf. on Lightning Protection, NJ, USA, 2016, pp. 14.
    11. 11)
      • 23. IEC 60794-4-2018, optical fiber cables – Part 4: sectional specification – aerial optical cables along electrical power lines’. 2018.
    12. 12)
      • 15. Dubitsky, S.D., Korovkin, N.V., Hayakawa, M., et al: ‘Thermal resistance of optical ground wire to direct lightning strike’. Ursi Int. Symp. on Electromagnetic Theory, Hiroshima, Japan, 2013.
    13. 13)
      • 11. Li, J., Li, G., Chen, X.: ‘Study on the thermal stability of OPGW under large current condition’. Proc. of the 2009 Pacific-Asia Conf. on Circuits, Communications and System, Chengdu, People's Republic of China, 2009, pp. 629635.
    14. 14)
      • 25. Chemartin, L., Lalande, P., Peyrou, B., et al: ‘Direct effects of lightning on aircraft structure: analysis of the thermal, electrical and mechanical constraints’, Aerosp. Lab, 2012, AL-09, (5), pp. 115.
    15. 15)
      • 26. Ogasawara, T., Hirano, Y., Yoshimura, A.: ‘Coupled thermal-electrical analysis for carbon fiber/epoxy composites exposed to simulated lightning current’, Composites: A Appl. Sci. Manuf., 2010, 57, (8), pp. 973981.
    16. 16)
      • 24. Aircraft lightning environment and related test waveforms: SAE ARP 5412A-2005’. 2005.
    17. 17)
      • 12. Li, X.M., Zhang, S.F., Wang, X.F., et al: ‘Malfunction analysis of OPGW of stainless steel-unit structure’, J. Central South Univ. Technol., 2008, 15, (s2), pp. 341346.
    18. 18)
      • 9. Ooura, K., Kanemaru, K., Matsubara, R., et al: ‘Application of a power line maintenance information system using OPGW to the Nishi-Gunma uhv line’, IEEE Trans. Power Deliv., 1995, 10, (1), pp. 511517.
    19. 19)
      • 19. Li, J., Sun, D. D.: ‘Analysis on lightning strike damages to optical fiber composite overhead ground wire’. Int. Conf. on Industrial & Information Systems, Haikou, People's Republic of China, 2009.
    20. 20)
      • 4. Goda, Y., Shimizu, M., Matsumoto, A.: ‘DC arc tests of OPGW simulating high energy lightning strike’. Proc. 28th Int. Conf. Light. Protect., Kanazawa, Japan, 2006, pp. 959964.
    21. 21)
      • 2. Kurono, M., Kuribara, M., Sumitani, H.: ‘Lightning location by detecting polarization fluctuations in opgw’. Proc. Int. Conf. on Optical Fiber Sensors, Kyongju, Republic of Korea, 1999.
    22. 22)
      • 13. Schank, W.Z., Wiesinger, J.: ‘Damages to optical ground wires caused by lightning’. The 10th Int. Symp. on High Voltage Engineering. [s. 1.], Montreal, Canada, 1997.
    23. 23)
      • 7. Chisholm, W.A., Levine, J.P., Chowdhuri, P.: ‘Lightning arc damage to optical fiber ground wires (OPGW): parameters and test methods’. Power Engineering Society Summer Meeting, Vancouver, BC, Canada, 2001.
    24. 24)
      • 17. Iwata, M., Ohtaka, T., Goda, Y.: ‘Calculation of melting/breaking of GW and OPGW strands struck by DC arc discharge simulating high energy lightning’, Electr. Power Syst. Res., 2014, 113, pp. 7078.
    25. 25)
      • 22. Karabay, S., Güven, E.A., Ertürk, A.T.: ‘Enhancement on Al–Mg–Si alloys against failure due to lightning arc occurred in energy transmission lines’, Eng. Fail. Anal., 2013, 31, pp. 153160.
    26. 26)
      • 8. Karabay, S., Tayşı, Y.: ‘Improving short-circuit current capacity, resistance, and breaking load of OPGW constructions by modifying aluminium alloy with Alb2’, Mater. Manuf. Process., 2007, 19, (6), pp. 11571169.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2019.1826
Loading

Related content

content/journals/10.1049/iet-gtd.2019.1826
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading