Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Early anomaly detection and localisation in distribution network: a data-driven approach

The measurement data collected from the supervisory control and data acquisition (SCADA) system installed in distribution network can reflect the operational state of the network effectively. In this study, a random matrix theory-based approach is developed for early anomaly detection and localisation by using the data. For every feeder in the distribution network, a corresponding data matrix is formed. Based on the Marchenko–Pastur law for the empirical spectral analysis of covariance ‘signal+noise’ matrix, the linear eigenvalue statistics are introduced to indicate the anomaly, and the outliers and their corresponding eigenvectors are analysed for locating the anomaly. As for the low observability feeders in the distribution network, an increasing data dimension algorithm is designed for the formulated low-dimensional matrices being more accurately analysed. The developed approach can detect and localise the anomaly at an early stage, and it is robust to random disturbance and measurement error. Cases on Matpower simulation data and real SCADA data corroborate the feasibility of the approach.

References

    1. 1)
      • 19. Zheng, Z., Yang, Y., Niu, X., et al: ‘Wide and deep convolutional neural networks for electricity-theft detection to secure smart grids’, IEEE Trans. Ind. Inf., 2018, 14, (4), pp. 16061615.
    2. 2)
      • 31. Qiu, R.C., Wicks, M.: ‘Cognitive networked sensing and big data’ (Springer, New York, NY, USA, 2014).
    3. 3)
      • 17. Erfani, S.M., Rajasegarar, S., Karunasekera, S., et al: ‘High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning’, Pattern Recogn., 2016, 58, pp. 121134.
    4. 4)
      • 11. Bruno, S., Benedictis, M.D., Scala, M.L.: ‘Taking the pulse’ of power systems: monitoring oscillations by wavelet analysis and wide area measurement system'. IEEE PES-PSCE, Atlanta, USA, 2006.
    5. 5)
      • 15. Rafferty, M., Liu, X., Laverty, D.M., et al: ‘Real-time multiple event detection and classification using moving window pca’, IEEE Trans. Smart Grid, 2016, 7, (5), pp. 25372548.
    6. 6)
      • 7. Allen, A.J., Sohn, S.W., Santoso, S., et al: ‘Algorithm for screening pmu data for power system events’. IEEE PES-Innovative Smart Grid Technologies (ISGT), Berlin, GER, 2012.
    7. 7)
      • 16. Wang, Z., Zhang, Y., Zhang, J.: ‘Principal components fault location based on wams/pmu measure system’. IEEE PES-GM, Detroit, USA, 2011.
    8. 8)
      • 4. Lu, C., Bi, T., Ilic, M., et al: ‘Guest editorial: new trends in wide-area monitoring and control of power systems with large scale renewables’, IET Gener. Trans. Distrib., 2017, 11, (18), pp. 44034405.
    9. 9)
      • 30. Marčenko, V.A., Pastur, L.A.: ‘Distribution of eigenvalues for some sets of random matrices’, Sbornik, Math., 1967, 1, (4), pp. 457483.
    10. 10)
      • 6. Rebizant, W., Szafran, J., Wiszniewski, A.: ‘Digital signal processing in power system protection and control’ (Springer Science & Business Media, Berlin, Germany, 2011).
    11. 11)
      • 28. Liu, W., Zhang, D., Wang, X., et al.:Power system transient stability analysis based on random matrix theory’, Proc. CSEE, 2016, 36, (18), pp. 48544863.
    12. 12)
      • 8. Messina, A.R., Esquivel, P., Lezama, F.: ‘Wide-area pmu data monitoring using spatio-temporal statistical models’. IEEE PES-PSCE, Phoenix, AZ, 2011.
    13. 13)
      • 33. Ambainis, A., Harrow, A.W., Hastings, M.B.: ‘Random tensor theory: extending random matrix theory to mixtures of random product states’, Commun. Math. Phys., 2012, 310, (1), pp. 2574.
    14. 14)
      • 22. Wishart, J.: ‘The generalised product moment distribution in samples from a normal multivariate population’, Biometrika, 1928, 20, (1/2), pp. 3252.
    15. 15)
      • 20. Niu, X., Li, J., Sun, J., et al: ‘Dynamic detection of false data injection attack in smart grid using deep learning’. IEEE PES-Innovative Smart Grid Technologies (ISGT), Washington, USA, 2019.
    16. 16)
      • 13. Hosseini, S.A., Amjady, N., Velayati, M.H.: ‘A fourier based wavelet approach using heisenberg's uncertainty principle and shannon's entropy criterion to monitor power system small signal oscillations’, IEEE Trans. Power Syst., 2015, 30, (6), pp. 33143326.
    17. 17)
      • 5. Ashrafian, A., Mirsalim, M.: ‘On-line recursive method of phasor and frequency estimation for power system monitoring and relaying’, IET Gener. Trans. Distrib., 2016, 10, (8), pp. 20022011.
    18. 18)
      • 12. Tashman, Z., Khalilinia, H., Venkatasubramanian, V.: ‘Multi-dimensional fourier ringdown analysis for power systems using synchrophasors’, IEEE Trans. Power Syst., 2014, 29, (2), pp. 731741.
    19. 19)
      • 24. Saad, N.A.S.B.K.: ‘Random matrix theory with applications in statistics and finance’ (Ottawa, Canada, 2013).
    20. 20)
      • 14. Xie, L., Chen, Y., Kumar, P.R.: ‘Dimensionality reduction of synchrophasor data for early event detection: linearized analysis’, IEEE Trans. Power Syst., 2014, 29, (6), pp. 27842794.
    21. 21)
      • 9. Kantra, S., Abdelsalam, H.A., Makram, E.B.: ‘Application of pmu to detect high impedance fault using statistical analysis’. IEEE PES-GM, Boston, USA, 2016.
    22. 22)
      • 25. Chaitanya, K.: ‘Random matrix theory approach to quantum mechanics’, arXiv preprint arXiv:150106665, 2015, Available at https://arxiv.org/pdf/1501.06665.pdf.
    23. 23)
      • 36. Zimmerman, R.D., Murillo-Sánchez, C.E.: ‘Matpower 6.0 user's manual’, 2016.
    24. 24)
      • 26. He, X., Ai, Q., Qiu, R.C., et al: ‘A big data architecture design for smart grids based on random matrix theory’, IEEE Trans. Smart Grid, 2017, 8, (2), pp. 674686.
    25. 25)
      • 10. Santoso, S., Grady, W.M., Powers, E.J., et al: ‘Characterization of distribution power quality events with fourier and wavelet transforms’, IEEE Trans. Power Deliv., 2000, 15, (1), pp. 247254.
    26. 26)
      • 23. Qiu, R.C., Hu, Z., Li, H., et al: ‘Cognitive radio communication and networking: principles and practice’ (Wiley, Hoboken, NJ, USA, 2012).
    27. 27)
      • 2. Shen, X.J., Jiang, X.C.: ‘Development of online monitoring system for 1500 v ethylene–propylene–rubber dc feeder cable of shanghai urban rail transit’, IET Gener. Trans. Distrib., 2011, 5, (7), pp. 720728.
    28. 28)
      • 27. Xu, X., He, X., Ai, Q., et al: ‘A correlation analysis method for power systems based on random matrix theory’, IEEE Trans. Smart Grid, 2017, 8, (4), pp. 18111820.
    29. 29)
      • 21. Mohammadpourfard, M., Weng, Y., Tajdinian, M.: ‘Benchmark of machine learning algorithms on capturing future distribution network anomalies’, IET Gener. Trans. Distrib., 2019, 13, (8), pp. 14411455.
    30. 30)
      • 3. Venkatraman, K., Dastagiri Reddy, B., Selvan, M.P., et al: ‘Online condition monitoring and power management system for standalone micro-grid using fpgas’, IET Gener. Trans. Distrib., 2016, 10, (15), pp. 38753884.
    31. 31)
      • 32. Shcherbina, M.: ‘Central limit theorem for linear eigenvalue statistics of the wigner and sample covariance random matrices’, arXiv preprint arXiv:11013249, 2011, Available at https://arxiv.org/pdf/1101.3249.pdf.
    32. 32)
      • 34. Lytova, A.: ‘Central limit theorem for linear eigenvalue statistics for a tensor product version of sample covariance matrices’, J. Theor. Probab., 2018, 31, pp. 10241057.
    33. 33)
      • 35. Zimmerman, R.D., Murillo-Sanchez, C.E., Thomas, R.J.: ‘Matpower: steady-state operations, planning, and analysis tools for power systems research and education’, IEEE Trans. Power Syst., 2011, 26, (1), pp. 1219.
    34. 34)
      • 1. Jaafari, M., Mir, R.: ‘Underground distribution cable incipient fault diagnosis system’ (Texas A&M University, Texas, USA, 2007).
    35. 35)
      • 29. Wu, X., Zhang, D., Liu, D., et al: ‘A method for power system steady stability situation assessment based on random matrix theory’, Proc. CSEE, 2016, 36, (20), pp. 54145420.
    36. 36)
      • 18. Liu, J., Guo, J., Orlik, P., et al: ‘Anomaly detection in manufacturing systems using structured neural networks’. IEEE World Congress on Intelligent Control and Automation (WCICA), Changsha, China, 2018.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2019.1790
Loading

Related content

content/journals/10.1049/iet-gtd.2019.1790
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address