access icon free Multi-slack power flow for islanded microgrids with radial and meshed topologies

This study proposes a new power flow formulation for islanded microgrids. The proposed power flow is based on the effect of the superposition principle and the solution of a small non-linear subproblem to determine the frequency of the microgrid and the voltage magnitude in the angular reference node in each iteration. These variables are determined by considering the following equations in the non-linear subproblem: active and reactive power balance equations and specified phase at the angular reference node. The application of the superposition principle allowed to obtain two versions of the proposed technique: one for radial networks − based on the current summation method − and another for meshed networks − based on the Gauss-Zbus method. Therefore, the iterative framework prosed in this study expands in a simple and integrated way the two most commonly used power flow methods in conventional distribution networks for islanded microgrids. The tests in microgrids with 33, 310 and 1438 nodes showed that the proposed approach has the same accuracy as Newton–Raphson algorithm, but with significantly lower computational cost in large scale microgrids. In addition, the proposed method for island microgrid showed good accuracy and convergence for the most common load models applied in power flow studies of islanded microgrids.

Inspec keywords: distributed power generation; Newton-Raphson method; load flow; power distribution faults

Other keywords: reactive power balance equations; scale microgrids; angular reference node; superposition principle; nonlinear subproblem; multislack power flow; power flow studies; active power balance equations; power flow formulation; island microgrid

Subjects: Distributed power generation; Interpolation and function approximation (numerical analysis)

References

    1. 1)
      • 12. Shirmohammadi, D., Hong, H.W., Semlyen, A., et al: ‘A compensation-based power flow method for weakly meshed distribution and transmission networks’, IEEE Trans. Power Syst., 1988, 3, (2), pp. 753762.
    2. 2)
      • 5. Wang, R., Sun, Q., Liu, X., et al: ‘Power flow calculation based on local controller impedance features for the AC microgrid with distributed generations’, IET Energy Syst. Integr., 2019, 1, (3), pp. 202209.
    3. 3)
      • 19. Li, Z., Shahidehpour, M., Aminifar, F., et al: ‘Networked microgrids for enhancing the power system resilience’. Proc. IEEE, 2017, 105, (7), pp. 12891310.
    4. 4)
      • 2. Olivares, D.E., Mehrizi-Sani, A., Etemadi, A.H., et al: ‘Trends in microgrid control’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 19051919.
    5. 5)
      • 15. Dugan, R.C., Arritt, R.F., McDermott, T.E., et al: ‘Distribution system analysis to support the smart grid’. Proc. 2010 IEEE Power and Energy Society General Meeting, Providence, RI, USA, 25-29 July 2010, pp. 18.
    6. 6)
      • 3. Mumtaz, F., Syed, M.H., Al-Hosani, M., et al: ‘A novel approach to solve power flow for islanded microgrids using modified Newton Raphson with droop control of dg’, IEEE Trans. Sustain. Energy, 2016, 7, (2), pp. 493503.
    7. 7)
      • 4. Araújo, J.R., Silva, E.N.M., Rodrigues, A.B., et al: ‘Assessment of the impact of microgrid control strategies in the power distribution reliability indices’, J. Control, Autom. Electr. Syst., 2017, 28, (2), pp. 271283.
    8. 8)
      • 7. Hameed, F., Hosani, M.A., Zeineldin, H.H.: ‘A modified backward/forward sweep load flow method for islanded radial microgrids’, IEEE Trans. Smart Grid, 2019, 10, (1), pp. 910918.
    9. 9)
      • 21. Cortes, C.A., Contreras, S.F., Shahidehpour, M.: ‘Microgrid topology planning for enhancing the reliability of active distribution networks’, IEEE Trans. Smart Grid, 2018, 9, (6), pp. 63696377.
    10. 10)
      • 10. Nassar, M.E., Salama, M.M.A.: ‘A novel branch-based power flow algorithm for islanded AC microgrids’, Electr. Power Syst. Res., 2017, 146, (May), pp. 5162.
    11. 11)
      • 22. Khodayar, M., Barati, M., Shahidehpour, M.: ‘Integration of high reliability distribution system in microgrid operation’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 19972006.
    12. 12)
      • 13. Teng, J.: ‘A direct approach for distribution system load flow solutions’, IEEE Trans. Power Deliv., 2003, 18, (3), pp. 882887.
    13. 13)
      • 9. Kumar, A., Jha, B.K., Dheer, D.K., et al: ‘Nested backward/forward sweep algorithm for power flow analysis of droop regulated islanded microgrid’, IET Gener. Transm. Distrib., 2019, 13, (14), pp. 30863095.
    14. 14)
      • 18. Chen, T.H., Chen, M.S., Hwang, K.J., et al: ‘Distribution system power flow analysis-a rigid approach’, IEEE Trans. Power Deliv., 1991, 6, (3), pp. 11461152.
    15. 15)
      • 6. Abdelaziz, M.M.A., Farag, H.E., El-Saadany, E.F., et al: ‘A novel and generalized three-phase power flow algorithm for islanded microgrids using a Newton trust region method’, IEEE Trans. Power Syst., 2013, 28, (1), pp. 190201.
    16. 16)
      • 20. Che, L., Zhang, X., Shahidehpour, M., et al: ‘Optimal planning of loop-based microgrid topology’, IEEE Trans. Smart Grid, 2017, 8, (4), pp. 17711781.
    17. 17)
      • 23. Jabr, R.A., Dzafic, I., Pal, B.C.: ‘Compensation in Complex variables for microgrid power flow’, IEEE Trans. Power Syst., 2018, 33, (3), pp. 32073209.
    18. 18)
      • 26. Torres, G.L., Quintana, V.H.: ‘An Interior-point method for nonlinear optimal power flow using voltage rectangular coordinates’, IEEE Trans. Power Syst.1998, 13, (4), pp. 12111218.
    19. 19)
      • 16. Heydt, G.T.: ‘The next generation of power distribution systems’, IEEE Trans. Smart Grid, 2010, 1, (3), pp. 225235.
    20. 20)
      • 24. Kocar, I., Mahseredjian, J., Karaagac, U., et al: ‘Multiphase load-flow solution for large-scale distribution systems using MANA’, IEEE Trans. Power Deliv., 2014, 29, (2), pp. 908915.
    21. 21)
      • 1. Hatziargyriou, N.: ‘Microgrids: architectures and control’ (Wiley-IEEE, UK., 2014).
    22. 22)
      • 17. Dugan, R.C., McDermott, T.E.: ‘An open source platform for collaborating on smart grid research’. Proc. 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24-29 July 2011, pp. 17.
    23. 23)
      • 11. Ritter, D., Franco, J.F., Romero, R.: ‘Analysis of the radial operation of distribution systems considering operation with minimal losses’, Int. J. Electr. Power Energy Syst., 2015, 67, (May), pp. 453461.
    24. 24)
      • 14. Baran, M.E., Wu, F.F.: ‘Network reconfiguration in distribution systems for loss reduction and load balancing’, IEEE Trans. Power Deliv., 1989, 4, (2), pp. 14011407.
    25. 25)
      • 25. IEEE PES AMPS DSAS Test Feeder Working Group, available at http://sites.ieee.org/pes-testfeeders/resources/, accessed 16 October 2019.
    26. 26)
      • 8. Díaz, G., Gómez-Aleixandre, J., Coto, J.: ‘Direct backward/forward sweep algorithm for solving load power flows in AC droop-regulated microgrids’, IEEE Trans. Smart Grid, 2016, 7, (5), pp. 22082217.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2019.1777
Loading

Related content

content/journals/10.1049/iet-gtd.2019.1777
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading