Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Vulnerability assessment approach for real-time and regional monitoring of backup protections: minimising number of GPS-based distance relays

Vulnerability assessment approach for real-time and regional monitoring of backup protections: minimising number of GPS-based distance relays

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Presenting an accurate and cost-effective solution to tackle static load encroachment issues in backup protection of transmission networks stand as a challenging task. Therefore, this study aims at devising a new backup protection scheme via GPS-based distance relays (GBDRs) against this issue. In this scheme, each GBDR calculates the vulnerability index locally, which helps to find out the vulnerable situation. When these indices exceeded their threshold, the protection centre is allowed for real-time monitoring in the corresponding area. In this regard, after calculating superimposed components, they are sent to the protection centre for discriminating faults from stressed conditions. Deployment of GPS-based relay in each bus brings higher costs and entails sharing large amounts of data. Therefore, a new techno-economic approach helps for the optimal deployment of these relays. To this end, zone-3 in some buses are eliminated, and the rest are equipped with GBDRs while each line at least is protected by two existing zones-3. By doing so, the network is divided into different areas that are protected with the minimum number of these relays. Whereby, coupled with the vulnerability indices, minimising the number of GBDRs alleviates the exchanged data.

References

    1. 1)
      • 33. http://sys.elec.kitami-it.ac.jp/uedaidemo/WebPF/39-New-England.pdf.
    2. 2)
      • 9. Jena, M.K., Panigrahi, B.K.: ‘Event triggered vulnerable relay identification and supervision to prevent zone-3 mal-operations’, IEEE Syst. J., 2019, 13, pp. 33683375.
    3. 3)
      • 39. Nougain, V., Jena, M.K., Panigrahi, B.K.: ‘Decentralised wide-area back-up protection scheme based on the concept of centre of reactive power’, IET Gener. Transm. Distrib., 2019, 13, (20), pp. 45514557.
    4. 4)
      • 3. Prakash, T., Mohanty, S.R., Singh, V.P.: ‘Distance relaying algorithm for phasor measurement unit assisted zone-3 relays of series compensated wind integrated system’, IET Gener. Transm. Distrib., 2019, 13, (21), pp. 47884797.
    5. 5)
      • 21. Bolandi, T.G., Haghifam, M.R., Khederzadeh, M.: ‘Real-time monitoring of zone-3 vulnerable distance relays to prevent maloperation under load encroachment condition’, IET Gener. Transm. Distrib., 2017, 11, (8), pp. 18781888.
    6. 6)
      • 6. Ziegler, G.: ‘Numerical distance protection: principles and applications’ (John Wiley & Sons , Germany, 2006).
    7. 7)
      • 22. Xu, Z.Y., Du, Z.Q., Ran, L., et al: ‘A current differential relay for a 1000-kV UHV transmission line’, IEEE Trans. Power Deliv., 2007, 22, (3), pp. 13921399.
    8. 8)
      • 29. Kröger, W., Zio, E.: ‘Vulnerable systems’ (Springer Science & Business Media, Springer London Dordrecht Heidelberg New York), 2011).
    9. 9)
      • 4. Li, S.H., Yorino, N., Zoka, Y.: ‘Operation margin analysis of zone-3 impedance relay based on sensitivities to power injection’, IET Gener. Transm. Distrib., 2007, 1, (2), pp. 312317.
    10. 10)
      • 40. Paladhi, S., Pradhan, A.K.: ‘Resilient protection scheme preserving system integrity during stressed condition’, IET Gener. Transm. Distrib., 2019, 13, (14), pp. 31883194.
    11. 11)
      • 5. Jin, M., Sidhu, T.S.: ‘Adaptive load encroachment prevention scheme for distance protection’, Electr. Power Syst. Res., 2008, 78, (10), pp. 16931700.
    12. 12)
      • 8. Song, H., Lee, B., Ajjarapu, V.: ‘Control strategies against voltage collapse considering undesired relay operations’, IET Gener. Transm. Distrib., 2009, 3, (2), pp. 164172.
    13. 13)
      • 35. Yazdaninejadi, A., Naderi, M.S., Gharehpetian, G.B., et al: ‘Protection coordination of directional overcurrent relays: new time current characteristic and objective function’, IET Gener. Transm. Distrib., 2017, 12, (1), pp. 190199.
    14. 14)
      • 23. Vaccaro, A., Zobaa, A.F.: ‘Wide area monitoring, protection and control systems: the enabler for smarter grids’ (The Institution of Engineering and Technology, Stevenage, UK., 2016).
    15. 15)
      • 38. https://icseg.iti.illinois.edu/ieee-57-bus-system.
    16. 16)
      • 31. Neyestanaki, M.K., Ranjbar, A.M.: ‘An adaptive PMU-based wide-area backup protection scheme for power transmission lines’, IEEE Trans. Smart Grid, 2015, 6, (3), pp. 15501559.
    17. 17)
      • 37. NERC, NERC recommendations to August 14, 2003 blackout-prevent and mitigate the impacts of future cascading blackouts, 2003, Available at www.NERC.com.
    18. 18)
      • 43. Adharapurapu, H.L., Bhimasingu, R.: ‘A novel algorithm for improving the differential protection of power transmission system’, Electr. Power Syst. Res., 2020, 1, (181), p. 106183.
    19. 19)
      • 32. Häger, U., Rehtanz, C., Voropai, N. (Eds.): ‘Monitoring, control and protection of interconnected power systems’ (Springer, Berlin, Heidelberg, 2014).
    20. 20)
      • 10. Eissa, M.M., Masoud, M.E., Elanwar, M.: ‘A novel back up wide-area protection technique for power transmission grids using phasor measurement unit’, IEEE Trans. Power Deliv., 2009, 25, (1), pp. 270278.
    21. 21)
      • 34. Ajjarapu, V.: ‘Computational techniques for voltage stability assessment and control’ (Springer Science & Business Media, Berlin/Heidelberg, Germany, 2007).
    22. 22)
      • 11. He, Z., Zhang, Z., Chen, W., et al: ‘Wide-area backup protection algorithm based on fault component voltage distribution’, IEEE Trans. Power Deliv., 2011, 26, (4), pp. 27522760.
    23. 23)
      • 36. AlRashidi, M.R., El-Hawary, M.E.: ‘A survey of particle swarm optimization applications in electric power systems’, IEEE Trans. Evol. Comput., 2008, 13, (4), pp. 913918.
    24. 24)
      • 15. Jena, M.K., Samantaray, S.R., Panigrahi, B.K.: ‘A new wide-area backup protection scheme for series-compensated transmission system’, IEEE Syst. J., 2015, 11, (3), pp. 18771887.
    25. 25)
      • 42. Yu, F., Booth, C., Dysko, A., et al: ‘Wide-area backup protection and protection performance analysis scheme using PMU data’, Int. J. Electr. Power Energy Syst., 2019, 110, pp. 630641.
    26. 26)
      • 7. Bai, H., Ajjarapu, V.: ‘Transmission system vulnerability assessment based on practical identification of critical relays and contingencies’. 2008 IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA., July 2008, pp. 18.
    27. 27)
      • 27. Wang, Z., He, J., Xu, Y., et al: ‘Multi-objective optimisation method of power grid partitioning for wide-area backup protection’, IET Gener. Transm. Distrib., 2017, 12, (3), pp. 696703.
    28. 28)
      • 25. Dambhare, S., Soman, S.A., Chandorkar, M.C.: ‘Adaptive current differential protection schemes for transmission-line protection’, IEEE Trans. Power Deliv., 2009, 24, (4), pp. 18321841.
    29. 29)
      • 30. NERC: ‘Planning committee report-methods to increase line relay loadability’. 7 June 2006. Available at www.NERC.com.
    30. 30)
      • 20. Parniani, M.S., Sanaye-Pasand, M., Jafarian, P.: ‘A blocking scheme for enhancement of distance relay security under stressed system conditions’, Int. J. Electr. Power Energy Syst., 2018, 94, pp. 104115.
    31. 31)
      • 28. Aminifar, F., Khodaei, A., Fotuhi-Firuzabad, M., et al: ‘Contingency-constrained PMU placement in power networks’, IEEE Trans. Power Syst., 2010, 25, (1), pp. 516523.
    32. 32)
      • 13. Suonan, J., Liu, K., Song, G.: ‘A novel UHV/EHV transmission-line pilot protection based on fault component integrated impedance’, IEEE Trans. Power Deliv., 2010, 26, (1), pp. 127134.
    33. 33)
      • 18. Nayak, P.K., Pradhan, A.K., Bajpai, P.: ‘Secured zone-3 protection during stressed condition’, IEEE Trans. Power Deliv., 2014, 30, (1), pp. 8996.
    34. 34)
      • 24. Hall, I., Beaumont, P. G., Baber, G. P., et al: ‘New line current differential relay using GPS synchronization’. 2003 IEEE Bologna Power Tech Conf. Proc., Bologna, Italy, June 2003, vol. 3, p. 8.
    35. 35)
      • 2. Zhang, H., Zhai, C., Xiao, G., et al: ‘Identifying critical risks of cascading failures in power systems’, IET Gener. Transm. Distrib., 2019, 13, pp. 24382445.
    36. 36)
      • 19. Seethalekshmi, K., Singh, S.N., Srivastava, S.C.: ‘A classification approach using support vector machines to prevent distance relay mal-operation under power swing and voltage instability’, IEEE Trans. Power Deliv., 2012, 27, (3), pp. 11241133.
    37. 37)
      • 12. Nayak, P.K., Pradhan, A.K., Bajpai, P.: ‘Wide-area measurement-based backup protection for power network with series compensation’, IEEE Trans. Power Deliv., 2014, 29, (4), pp. 19701977.
    38. 38)
      • 1. Sharafi, A., Sanaye-Pasand, M., Aminifar, F.: ‘Transmission system wide-area back-up protection using current phasor measurements’, Int. J. Electr. Power Energy Syst., 2017, 92, pp. 93103.
    39. 39)
      • 14. Bolandi, T.G., Seyedi, H., Hashemi, S.M., et al: ‘Impedance-differential protection: a new approach to transmission-line pilot protection’, IEEE Trans. Power Deliv., 2015, 30, (6), pp. 25102518.
    40. 40)
      • 26. Zare, J., Aminifar, F., Sanaye-Pasand, M.: ‘Communication-constrained regionalization of power systems for synchrophasor-based wide-area backup protection scheme’, IEEE Trans. Smart Grid, 2015, 6, (3), pp. 15301538.
    41. 41)
      • 17. Kundu, P., Pradhan, A. K.: ‘Synchrophasor-assisted zone-3 operation’, IEEE Trans. Power Deliv., 2013, 29, (2), pp. 660667.
    42. 42)
      • 16. Zare, J., Aminifar, F., Sanaye-Pasand, M.: ‘Synchrophasor-based wide-area backup protection scheme with data requirement analysis’, IEEE Trans. Power Deliv., 2014, 30, (3), pp. 14101419.
    43. 43)
      • 41. Azizi, S., Liu, G., Dobakhshari, A.S., et al: ‘Wide-area backup protection against asymmetrical faults using available phasor measurements’, IEEE Trans. Power Deliv., 2019Available at: https://ieeexplore.ieee.org/abstract/document/8937019.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2019.1756
Loading

Related content

content/journals/10.1049/iet-gtd.2019.1756
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address