access icon free Cascaded controller for a standalone microgrid-connected inverter based on triple-action controller and particle swarm optimisation

In this study, power quality (PQ) improvement has been addressed, in the form of total harmonic distortion (THD) minimisation, as well as, voltage regulation using two cascaded schemes. The first scheme is the optimised triple action controller (TAC)-based pulse width modulated voltage source inverter. TAC consists of a proportional resonant controller, selective harmonic compensator, and a new added current-assisted feed forward controller. The second scheme is the optimised cascaded dual-level control of a standalone microgrid. Cascaded level control consists of droop, secondary, and synchronisation control loops. The two approaches have been optimised for best parameter selection out of the possible solution space using a particle swarm optimisation algorithm to satisfy the study objectives. The optimisation objectives/constraints were to minimise THD and minimise overshoot/undershoot, rise time, and steady-state error for voltage compensation under two disturbance scenarios, sudden load change, and voltage flicker injection as a power frequency disturbance. These research results have been compared to other existing simulation and experimental work. The results proved to be better in output voltage, frequency, response time, and THD. Furthermore, the proposed schemes ensure power factor improvement, high efficiency, overall system PQ, and reliability at various load conditions.

Inspec keywords: distributed power generation; particle swarm optimisation; power grids; feedforward; power factor; invertors; cascade control; voltage control; harmonic distortion; power supply quality; electric current control; power generation control

Other keywords: cascaded controller; triple-action controller; voltage regulation; study objectives; added current-assisted feed forward controller; cascaded level control; modulated voltage source inverter; total harmonic distortion; power quality improvement; power factor improvement; voltage flicker injection; output voltage; voltage compensation; THD; synchronisation control loops; power frequency disturbance; proportional resonant controller; cascaded schemes; TAC; optimised triple action controller-based pulse; optimised cascaded dual-level control; particle swarm optimisation algorithm; standalone microgrid-connected inverter; selective harmonic compensator

Subjects: Current control; Distributed power generation; Optimisation techniques; Control of electric power systems; Voltage control; Power convertors and power supplies to apparatus; Optimisation techniques

References

    1. 1)
      • 10. Joorabian, M., Mirabbasi, D., Sina, A.: ‘Voltage flicker compensation using STATCOM’. 2009 4th IEEE Conf. on Industrial Electronics and Applications, Xi'an, People's Republic of China, 2009).
    2. 2)
      • 2. Vinayagam, A., Swarna, K., Khoo, S.Y., et alPower quality analysis in microgrid: an Experimental approach’, J. Power Energy Eng., 2016, 4, pp. 1734.
    3. 3)
      • 8. Chattopadhyay, S., Mitra, M., Sengupta, S.: ‘Electric power quality’ (Springer, Dordrecht, The Netherlands, 2011) pp. 512.
    4. 4)
      • 6. Haddad, M., Rahmani, S., Hamadi, A., et al: ‘Harmonic mitigation using three level bidirectional neutral point clamped (BNPC) based three phase shunt active power filter’. 2015 IEEE Int. Conf. on Industrial Technology (ICIT), Seville, Spain, 2015.
    5. 5)
      • 16. Sen, S., Yenduri, K., Sensarma, P.: ‘Step-by-step design and control of LCL filter based three phase grid-connected inverter’. 2014 IEEE Int. Conf. on Industrial Technology (ICIT), Busan, Republic of Korea, 2014.
    6. 6)
      • 5. Bollen, M.H., Hassan, F.: ‘Integration of distributed generation in the power system' (John Wiley & Sons, Hoboken, New Jersey, USA, 2011).
    7. 7)
      • 41. Andishgar, M.H., Gholipour, E., Hooshmand, R.-A.: ‘Voltage quality enhancement in islanded microgrids with multi-voltage quality requirements at different buses’, IET Gener. Transm. Distrib., 2018, 12, (9), pp. 21732180.
    8. 8)
      • 31. ‘IEEE Recommended Practice for Measurement and Limits of Voltage Fluctuations and Associated Light Flicker on AC Power Systems’, IEEE Power Engineering Society, 2005.
    9. 9)
      • 12. Liu, Q., Tao, Y., Liu, X., et al: ‘Voltage unbalance and harmonics compensation for islanded microgrid inverters’, IET Power Electron., 2013, 7, (5), pp. 10551063.
    10. 10)
      • 40. Ulinuha, A., Masoum, M., Islam, S.: ‘Hybrid genetic-fuzzy algorithm for volt/var/total harmonic distortion control of distribution systems with high penetration of non-linear loads’, IET Gener. Transm. Distrib., 2011, 5, (4), pp. 425439.
    11. 11)
      • 35. Eberhart, R.C., Shi, Y.: ‘Comparison between genetic algorithms and particle swarm optimization’. Int. Conf. on evolutionary programming, San Diego, CA, USA, 1998.
    12. 12)
      • 27. ‘IEEE Guide for Identifying and Improving Voltage Quality in Power Systems’, Transmission and Distribution Committee, 2018, IEEE Std 1250™-2018.
    13. 13)
      • 29. Lu, X., Sun, K., Huang, L., et al: ‘Virtual impedance based stability improvement for Dc microgrids with constant power loads’. 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, 2014.
    14. 14)
      • 39. Wu, D., Tang, F., Guerrero, J.M., et al: ‘Autonomous active and reactive power distribution strategy in islanded microgrids’. 2014 IEEE Applied Power Electronics Conf. and Exposition-APEC 2014, Fort Worth, TX, USA, 2014.
    15. 15)
      • 14. Wessels, C., Dannehl, J., Fuchs, F.W.: ‘Active damping of LCL-filter resonance based on virtual resistor for PWM rectifiers—stability analysis with different filter parameters’. 2008 IEEE Power Electronics Specialists Conf., Kiel, Germany, 2008.
    16. 16)
      • 38. Andishgar, M.H., Gholipour, E., Hooshmand, R.-A.: ‘Improved secondary control for optimal total harmonic distortion compensation of parallel connected DGs in islanded microgrids’, IET Smart Grid, 2019, 2, (1), pp. 115122.
    17. 17)
      • 42. Micallef, A., Apap, M., Spiteri-Staines, C., et al: ‘Reactive power sharing and voltage harmonic distortion compensation of droop controlled single phase islanded microgrids’, IEEE Trans. Smart Grid, 2014, 5, (3), pp. 11491158.
    18. 18)
      • 9. Crider, J.M., Sudhoff, S.D., ‘Reducing impact of pulsed power loads on microgrid power systems’, IEEE Trans. Smart Grid, 2010, 1, (3), pp. 270277.
    19. 19)
      • 34. Sen, P., Panda, K.P., Rout, S.: ‘Enhancement of power quality and voltage flicker mitigation using new PWM based DSTATCOM’. 2017 Int. Conf. on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 2017.
    20. 20)
      • 23. Rodriguez, P., Luna, A., Munoz-Aguilar, R.S., et al: ‘A stationary reference frame grid synchronization system for three-phase grid-connected power converters under adverse grid conditions’, IEEE Trans. Power Electron., 2011, 27, (1), pp. 99112.
    21. 21)
      • 19. Blanco, C., Reigosa, D., Vasquez, J.C., et alVirtual admittance loop for voltage harmonic compensation in microgrids’, IEEE Trans. Ind. Appl., 2016, 52, (4), pp. 33483356.
    22. 22)
      • 30. Simpson-Porco, J.W., Shafiee, Q., Dörfler, F., et alSecondary frequency and voltage control of islanded microgrids via distributed averaging’, IEEE Trans. Ind. Electron., 2015, 62, (11), pp. 70257038.
    23. 23)
      • 36. 1547-2018, I. ‘IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces’, 2018.
    24. 24)
      • 37. Shi, Y., Eberhart, R.C.: ‘Empirical study of particle swarm optimization’. Proc. 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), Berlin, Heidelberg, 1999.
    25. 25)
      • 20. Moafi, M., Marzband, M., Savaghebi, M., et alEnergy management system based on fuzzy fractional order PID controller for transient stability improvement in microgrids with energy storage’, Int. Trans. Electr. Energy Syst., 2016, 26, (10), pp. 20872106.
    26. 26)
      • 13. Moghadasi, A.H., Islam, A., Amini, M.: ‘LVRT capability assessment of FSIG-based wind turbine utilizing UPQC and SFCL’. 2014 IEEE PES General Meeting| Conf. & Exposition, National Harbor, MD, USA, 2014).
    27. 27)
      • 28. Wang, X., Li, Y.W., Blaabjerg, F., et alVirtual-impedance-based control for voltage-source and current-source converters’, IEEE Trans. Power Electron., 2014, 30, (12), pp. 70197037.
    28. 28)
      • 33. Larsson, T., Poumarede, C.: ‘STATCOM, an efficient means for flicker mitigation’. IEEE Power Engineering Society. 1999 Winter Meeting (Cat. No. 99CH36233), New York, NY, USA, 1999.
    29. 29)
      • 15. Said-Romdhane, M., Naouar, M., Belkhodja, I., et al: ‘An improved LCL filter design in order to ensure stability without damping and despite large grid impedance variations’, Energies, 2017, 10, (3), p. 336.
    30. 30)
      • 18. Tiang, T.L., Ishak, D.: ‘Modeling and simulation of deadbeat-based Pi controller in a single-phase H-bridge inverter for stand-alone applications’, Turk. J. Electr. Eng. Comput. Sci., 2014, 22, (1), pp. 4356.
    31. 31)
      • 21. Meral, M.E., Çelik, D., ‘Comparison of SRF/PI-and STRF/PR-based power controllers for grid-tied distributed generation systems’, Electr. Eng., 2018, 100, (2), pp. 633643.
    32. 32)
      • 44. C84.1, A., ‘Power Quality Standards for Electric Service’, June 1, 2008.
    33. 33)
      • 24. Vasquez, J.C., Guerrero, J.M., Savaghebi, M., et al: ‘Modeling, analysis, and design of stationary-reference-frame droop-controlled parallel three-phase voltage source inverters’, IEEE Trans. Ind. Electron., 2012, 60, (4), pp. 12711280.
    34. 34)
      • 26. Nasirian, V., Shafiee, Q., Guerrero, J.M., et alDroop-free distributed control for Ac microgrids’, IEEE Trans. Power Electron., 2015, 31, (2), pp. 16001617.
    35. 35)
      • 1. Hirsch, A., Parag, Y., Guerrero, J., ‘Microgrids: a review of technologies, key drivers, and outstanding issues’, Renew. Sustain. Energy Rev., 2018, 90, pp. 402411.
    36. 36)
      • 4. Pepermans, G., Driesen, J., Haeseldonckx, D., et al: ‘Distributed generation: definition, benefits and issues’, Energy Policy, 2005, 33, (6), pp. 787798.
    37. 37)
      • 43. Bouzid, A.M., Sicard, P., Cheriti, A., et al: ‘Voltage and frequency control of wind-powered islanded microgrids based on induction generator and STATCOM’. 2015 3rd Int. Conf. on Control, Engineering & Information Technology (CEIT), Tlemcen, Algeria, 2015.
    38. 38)
      • 3. Li, F., Li, R., Zhou, F.: ‘Microgrid technology and engineering application' (Elsevier, China Electric Power Press, People's Republic of China, 2015).
    39. 39)
      • 7. Siwczyński, M., Jaraczewski, M., ‘New Parseval's inactive-power factor of a two-terminal network’, Int. J. Electr. Power Energy Syst., 2019, 104, pp. 222229.
    40. 40)
      • 17. Liu, F., Zhang, X., Yu, C., et al: ‘LCL-filter design for grid-connected three-phase PWM converter based on maximum current ripple’. 2013 IEEE ECCE Asia Downunder, Melbourne, VIC, Australia, 2013.
    41. 41)
      • 25. Feng, W., Sun, K., Guan, Y., et al: ‘A harmonic current suppression control strategy for droop-controlled inverter connected to the distorted grid’. 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, Canada, 2015.
    42. 42)
      • 22. Zammit, D., Staines, C.S., Apap, M., et alDesign of PR current control with selective harmonic compensators using Matlab’, J. Electr. Syst. Inf. Technol., 2017, 4, (3), pp. 347358.
    43. 43)
      • 11. Sainz, L., Balcells, J., ‘Harmonic interaction influence due to current source shunt filters in networks supplying nonlinear loads’, IEEE Trans. Power Deliv., 2012, 27, (3), pp. 13851393.
    44. 44)
      • 32. IEC, ‘Electromagnetic Compatibility (EMC) - Part 4-15: Testing and Measurement Techniques - Flickermeter - Functional and Design Specifications’, IEC 61000-4-15:2010, 2010.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2019.1641
Loading

Related content

content/journals/10.1049/iet-gtd.2019.1641
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading