Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Enhanced Z-bus method for analytical computation of voltage sensitivities in distribution networks

Voltage sensitivity matrices are fundamental for the model-based control of the distribution networks. Here, an accurate estimation of voltage sensitivity to active/reactive power injections and tap-position of an on-load tap changer is essential for network modelling. In literature, voltage sensitivity to tap-position is computed by assuming its equivalence with voltage sensitivity to voltage magnitude of the slack bus. However, this approach provides an approximate estimation, and it leads to significant error when the external grid has a low strength. Hence, this study proposes an Enhanced Z-bus method, which comprises of analytical expressions for direct estimation of the voltage sensitivity to tap-position and active/reactive power injections. Importantly, the enhanced Z-bus method can accurately compute the voltage sensitivity to tap-position and active/reactive power injections for any strength of the external grid. The proposed method is tested in a radial (UKGDS), mesh (Case33bw) and reconfigurable (MV Oberrhein) network. Furthermore, it is benchmarked with the perturb-and-observe, Jacobian method and the proprietary methods of DigSILENT PowerFactory. Finally, the proposed method is found to be computationally competent with the existing Jacobian and Z-bus methods.

References

    1. 1)
      • 34. Cutsem, T., Vournas, C.: ‘Voltage stability of electric power systems’ (Springer, US, Boston, MA, 1998).
    2. 2)
      • 25. Kumar, V., Gupta, I., Gupta, H.O., et al: ‘Voltage and current sensitivities of radial distribution network: a new approach’, IEE Proc. Gener. Trans. Distrib., 2005, 152, (6), pp. 813.
    3. 3)
      • 22. Khatod, D.K., Pant, V., Sharma, J.: ‘A novel approach for sensitivity calculations in the radial distribution system’, IEEE Trans. Power Deliv., 2006, 21, (4), pp. 20482057.
    4. 4)
      • 7. Zhou, Q., Bialek, J.W.: ‘Generation curtailment to manage voltage constraints in distribution networks’, IET. Gener. Transm. Distrib., 2007, 1, (3), pp. 492498.
    5. 5)
      • 18. Grainger, J.J., Stevenson, W.D.: ‘Power System Analysis’, 2003.
    6. 6)
      • 9. Ding, T., Liu, S., Wu, Z., et al: ‘Sensitivity-based relaxation and decomposition method to dynamic reactive power optimisation considering DGs in active distribution networks’, IET. Gener. Transm. Distrib., 2017, 11, (1), pp. 3748.
    7. 7)
      • 10. Yan, R., Saha, T.K.: ‘Investigation of voltage sensitivities to photovoltaic power fluctuations in unbalanced distribution networks’. 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, 2012, pp. 17.
    8. 8)
      • 27. Bakhshideh-Zad, B., Hasanvand, H., Lobry, J., et al: ‘Optimal reactive power control of DGs for voltage regulation of MV distribution systems using sensitivity analysis method and PSO algorithm’, Int. J. Electr. Power Energy Syst., 2015, 68, pp. 5260.
    9. 9)
      • 35. Rahmani-Andebili, M.: ‘Dynamic and adaptive reconfiguration of electrical distribution system including renewables applying stochastic model predictive control’, IET Gener. Trans. Distrib., 2017, 11, (16), pp. 39123921.
    10. 10)
      • 2. Zhou, Q., Bialek, J.W.: ‘Simplified calculation of voltage and loss sensitivity factors in distribution networks’. 16th Power System Computation Conf., Glasgow, UK, 2008, pp. 1419.
    11. 11)
      • 11. Kolacia, T., Drapela, J.: ‘Voltage sensitivity to power flows related to distributed generation’. Proc. - 2016 17th Int. Scientific Conf. on Electric Power Engineering EPE 2016, Prague, Czech Republic, 2016, pp. 16.
    12. 12)
      • 28. Zad, B.B., Lobry, J., Vallée, F.: ‘A new voltage sensitivity analysis method for medium-voltage distribution systems incorporating power losses impact’, Electr. Power Compon. Syst., 2018, 46, (14–15), pp. 15401553.
    13. 13)
      • 32. Thurner, L., Scheidler, A., Schafer, F., et al: ‘Pandapower - an open-source python tool for convenient modeling, analysis, and optimization of electric power systems’, IEEE Trans. Power Syst., 2018, 33, (6), pp. 65106521.
    14. 14)
      • 24. Ouali, S., Cherkaoui, A.: ‘Sensitivity analysis in medium voltage distribution systems’, Int. J. Eng. Res. Technol., 2018, 7, (11), pp. 4349.
    15. 15)
      • 33. Zimmerman, R.D.: ‘AC Power Flows, Generalized OPF Costs and their Derivatives using Complex Matrix Notation’, Power Systems Engineering Research Center (Pserc), Tech.Rep., 2019. [Online]. Available at https://matpower.org/docs/TN2-OPF-Derivatives.pdf.
    16. 16)
      • 21. McCalla, W.J.: ‘Fundamentals of computer-aided circuit simulation’ (Springer, US, Boston, MA, 1987).
    17. 17)
      • 4. Jiang, Y., Wan, C., Wang, J., et al: ‘Stochastic receding horizon control of active distribution networks with distributed renewables’, IEEE Trans. Power Syst., 2019, 34, (2), pp. 13251341.
    18. 18)
      • 20. Gurram, R., Subramanyam, B.: ‘Sensitivity analysis of radial distribution network- adjoint network method’, Int. J. Electr. Power Energy Syst., 1999, 21, (5), pp. 323326.
    19. 19)
      • 15. Peschon, J., Piercy, D.S., Tinney, W.F., et al: ‘Sensitivity in power systems’, IEEE Trans. Power Appar. Syst., 1968, PAS-87, (8), pp. 16871696.
    20. 20)
      • 13. Bozorg, M., Alizader-Mousavi, O., Wasterlain, S., et al: ‘Model-less/Measurement-based computation of voltage sensitivities in unbalanced electrical distribution networks: experimental validation’. 2019 21st European Conf. on Power Electronics and Applications (EPE '19 ECCE Europe), Genova, Italy, 2019, pp. 19.
    21. 21)
      • 19. El-Kady, M.: ‘A unified approach to generalized network sensitivities with applications to power system analysis and planning’. PhD thesis, McMaster University, 1980.
    22. 22)
      • 17. Begovic, M.M., Phadke, A.G.: ‘Control of voltage stability using sensitivity analysis’, IEEE Trans. Power Syst., 1992, 7, (1), pp. 114123.
    23. 23)
      • 3. Christakou, K., Leboudec, J.Y., Paolone, M., et al: ‘Efficient computation of sensitivity coefficients of node voltages and line currents in unbalanced radial electrical distribution networks’, IEEE Trans. Smart Grid, 2013, 4, (2), pp. 741750.
    24. 24)
      • 8. Armendariz, M., Babazadeh, D., Brodén, D., et al: ‘Strategies to improve the voltage quality in active low-voltage distribution networks using DSO's assets’, IET. Gener. Transm. Distrib., 2017, 11, (1), pp. 7381.
    25. 25)
      • 23. Conti, S., Raiti, S., Vagliasindi, G.: ‘Voltage sensitivity analysis in radial MV distribution networks using constant current models’. IEEE Int. Symp. on Industrial Electronics, Bari, Italy, 2010, pp. 25482554.
    26. 26)
      • 26. Hong, M.: ‘An approximate method for loss sensitivity calculation in unbalanced distribution systems’, IEEE Trans. Power Syst., 2014, 29, (3), pp. 14351436.
    27. 27)
      • 5. Baran, M., Wu, F.F.: ‘Optimal sizing of capacitors placed on a radial distribution system’, IEEE Trans. Power Deliv., 1989, 4, (1), pp. 735743.
    28. 28)
      • 1. Borghetti, A., Member, S., Bosetti, M., et al: ‘Short-term scheduling and control of active distribution systems with high penetration of renewable resources’, IEEE Syst. J., 2010, 4, (3), pp. 313322.
    29. 29)
      • 6. Jupe, S.C.E., Taylor, P.C., Michiorri, A.: ‘Coordinated output control of multiple distributed generation schemes’, IET Renew. Power Gener., 2010, 4, (3), pp. 283297.
    30. 30)
      • 30. ‘SEDG/UKGDS’, Available at https://github.com/sedg/ukgds, accessed 23 August 2019.
    31. 31)
      • 14. Weckx, S., D'Hulst, R., Driesen, J.: ‘Voltage sensitivity analysis of a laboratory distribution grid with incomplete data’, IEEE Trans. Smart Grid, 2015, 6, (3), pp. 12711280.
    32. 32)
      • 16. Shirmohammadi, D., Hong, H.W., Semlyen, A., et al: ‘A compensation-based power flow method for weakly meshed distribution and transmission net-works’, IEEE Trans. Power Syst., 1988, 3, (2), pp. 753762.
    33. 33)
      • 29. Teng, J.H.: ‘A direct approach for distribution system load flow solutions’, IEEE Trans. Power Deliv., 2003, 18, (3), pp. 882887.
    34. 34)
      • 31. Baran, M.E., Wu, F.F.: ‘Network reconfiguration in distribution systems for loss reduction and load balancing’, IEEE Trans. Power Deliv., 1989, 4, (2), pp. 14011407.
    35. 35)
      • 12. Gupta, R., Sossan, F., Paolone, M.: ‘Performance assessment of linearized OPF-based distributed real-time predictive control’. 2019 IEEE Milan PowerTech, Milan, Italy, 2019, vol. 2, pp. 16.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2019.1602
Loading

Related content

content/journals/10.1049/iet-gtd.2019.1602
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address