access icon free Practical solutions for ground grid circulating currents caused by air-core reactor

This study describes an actual problem with circulating current at the ground grid of an actual power system that has an air-core reactor. Such reactors generate a large amount of magnetic flux whose path can be closed through its underneath ground grid. This magnetic flux induces a voltage on the ground meshes and thus results in considerable circulating currents that pass through the ground meshes. Indeed, the main novelty of this study is investigating the effect of air-core reactors on the other nearby equipment and considering the air-core reactor's flux underneath ground meshes. This phenomenon occurred in a steel industrial plant and practically leads to severe damages to equipment through which the current has been flowing, including ground grid conductors, cable shields, and foundation armatures. This study addresses the origins of problems raised by the manufactured equipment in a reputable company based on both simulations and experimental studies. Based on the obtained results, several practical approaches are proposed and implemented to overcome the problems mentioned above.

Inspec keywords: earthing; steel industry; reactors (electric); magnetic flux; power grids; industrial plants

Other keywords: ground meshes; ground grid circulating currents; ground grid conductors; steel industrial plant; air-core reactor; circulating currents; underneath ground grid; actual power system; magnetic flux

Subjects: d.c. machines; a.c. machines; Metallurgical industries; Transformers and reactors; Power applications in metallurgical industries; Power system protection

References

    1. 1)
      • 32. Colominas, I., Navarrina, F., Casteleiro, M.: ‘Analysis of transferred earth potentials in grounding systems: A BEM numerical approach’, IEEE Trans. Power Deliv., 2005, 20, (1), pp. 339345.
    2. 2)
      • 1. Rajkumar, V., Mohler, R.R.: ‘Bilinear generalized predictive control using the thyristor-controlled series-capacitor’, IEEE Trans. Power Syst., 1994, 9, (4), pp. 19871993.
    3. 3)
      • 23. He, J., Yu, G., Yuan, J., et al: ‘Decreasing grounding resistance of substation by deep-ground-well method’, IEEE Trans. Power Deliv., 2005, 20, (2), pt. 1, pp. 738744.
    4. 4)
      • 4. Abedini, M., Sanaye-pasand, M., Davarpanah, M., et al: ‘A loss- of-field detection based on rotor signal estimation’, IEEE Trans. Power Deliv., 2017, 33, (2), pp. 779788.
    5. 5)
      • 17. Urankar, L.K.: ‘Vector potential and magnetic field of current-carrying circular finite arc segment in analytical form’, IEEE Trans. Magn., 2003, 18, pp. 18601867.
    6. 6)
      • 11. Du, H., Wen, X., Lu, H., et al: ‘Magnetic field distribution around 35 kV three-phase air-core reactors’, High Volt. Eng., 2012, 38, pp. 28582862.
    7. 7)
      • 20. Bo, Z., Xiang, C.: ‘Analysis of complex grounding grids in frequency domain considering mutual inductances’, Proc. CSEE, 2003, 3, pp. 7780.
    8. 8)
      • 27. Ma, J., Dawalibi, F.P.: ‘Analysis of grounding systems in soils with finite volumes of different resistivity's’, IEEE Trans. Power Deliv., 2002, 17, (2), pp. 596602.
    9. 9)
      • 6. Air Core Shunt Reactors, a Catalogue of Trench Company, available at: http://www.trenchgroup.com.
    10. 10)
      • 28. IEEE Guide for Safety of AC Substation Groundings, IEEE Standard 80-2000, Jan. 2000.
    11. 11)
      • 31. Stella, U., Gustavsen, B., Leth, C., et al: ‘Field test and simulation of a 400-kV cross-bonded cable system’, IEEE Trans. Power Deliv., 2011, 26, (3), pp. 14031410.
    12. 12)
      • 24. Nor, N.M., Trlep, M., Abdullah, S., et al: ‘Determination of threshold electric field of practical earthing systems by fem and experimental work’, IEEE Trans. Power Deliv., 2013, 28, (4), pp. 21802184.
    13. 13)
    14. 14)
      • 2. Hashemi, S.M., Sanaye-Pasand, M., Abedini, M.: ‘Under-impedance load shedding: A new preventive action against voltage instability’, IET Gener. Transm. Distrib., 2018, 13, (2), pp. 201208.
    15. 15)
      • 9. Enohnyaket, M., Ekman, J.: ‘Analysis of air-core reactors from DC to very high frequencies using PEEC models’, IEEE Trans. Power Deliv., 2009, 24, (24), pp. 719729.
    16. 16)
      • 13. Yu, Q., Sebo, S.A.: ‘Calculation accuracy of the planar filament current loop stack model of large air-core reactor coils’, IEEE Trans. Magn., 1997, 33, pp. 33133315.
    17. 17)
      • 22. Chen, L.-H., Chen, J.-F., Liang, T.-J., et al: ‘A study of grounding resistance reduction agent using granulated blast furnace slag’, IEEE Trans. Power Deliv., 2004, 19, (3), pp. 973978.
    18. 18)
      • 10. Zou, L., Gong, P., Zhang, L.: ‘Small-scale experiment and model simplification of space magnetic fields around air-core reactors’, High Volt. Eng., 2014, 40, pp. 16751682.
    19. 19)
      • 21. Xiuke, Y., Zhongbin, D., Cunzhan, Y., et al: ‘Research on magnetic field and temperature field of air-core power reactor’, Electr. Mach. Syst. (ICEMS), 2011, 1, pp. 14.
    20. 20)
      • 29. Shiying, M., Minxiao, H., Chongru, L., et al: ‘IEEE 9-buses system simulation and modeling in PSCAD’. Power and Energy Engineering Conf. (APPEEC), Asia-Pacific Chengdu, March 2010, pp. 14.
    21. 21)
      • 34. Rajotte, Y., De Sève, J., Fortin, J., et al: ‘Earth potential rise influence near HV substations in rural areas’. 18th Int. Conf. Exhibit. Elect. Distrib., Turin, Italy, November 2005, pp. 25.
    22. 22)
      • 7. Salinas, E., Atalaya, J., Hamnerius, Y., et al: ‘A new technique for reducing extremely low frequency magnetic field emissions affecting large building structures’, Environmentalist, 2007, 27, pp. 571576.
    23. 23)
      • 12. Yu, Q., Sebo, S.A.: ‘Simplified magnetic field modeling and calculation of large air-core reactor coils’, IEEE Trans. Magn., 1996, 32, pp. 42814283.
    24. 24)
      • 16. Anikesh, D., Mathane, H., Mangalvedekar, A.: ‘Effective electromagnetic shielding of air core reactor’. 2015 13th Int. Conf. on Electromagnetic Interference and Compatibility (INCEMIC), 2015, pp. 220224.
    25. 25)
      • 33. Colominas, I., Navarrina, F., Casteleiro, M.: ‘Numerical simulation of transferred potentials in earthing grids considering layered soil models’, IEEE Trans. Power Deliv., 2007, 22, (3), pp. 15141522.
    26. 26)
      • 15. Xiuke, Y., Cunzhan, Y.: ‘Magnetic field analysis and circulating current computation of air core power reactor’. IEEE Asia-Pacific Power and Energy Engineering Conf., Wuhan, People's Republic of China, April 2011, pp. 17.
    27. 27)
      • 3. Gutierrez, J.J., Ruiz, J., Ruiz de Gauna, S.: ‘Linearity of the IEC flickermeter regarding amplitude variations of rectangular fluctuations’, IEEE Trans. Power Deliv., 2007, 22, (1), pp. 729731.
    28. 28)
      • 18. Ciric, I.R.: ‘Surface source models and formulas for the magnetic field of polygonal cross section conductors', IEEE Trans. Magn., 1988, 24, pp. 31323134.
    29. 29)
      • 14. Ji, J., Yu, J.H., Yuan, Y.F., et al: ‘Research of the magnetic field distribution and protection body setting for air-core reactor’, High Volt. Appar., 2009, 45, pp. 6164.
    30. 30)
      • 30. COMSOL Multiphysics® v. 5.5. Available at: www.comsol.com. COMSOL AB, Stockholm, Sweden.
    31. 31)
      • 25. Zhang, B., Zhao, Z., Cui, X., et al: ‘Diagnosis of breaks in substation's grounding grid by using electromagnetic method’, IEEE Trans. Magn., 2002, 38, (2), pt. 1, pp. 473476.
    32. 32)
      • 26. Otero, A.F., Cidras, J., del Alamo, J.L.: ‘Frequency-dependent grounding system calculation by means of a conventional nodal analysis technique’, IEEE Trans. Power Deliv., 1999, 14, (3), pp. 873878.
    33. 33)
      • 8. Xiao, C.: ‘Design and calculation analysis of ±800 kV/6250A UHVDC dry-type smoothing reactor’. Ph.D. Thesis, North China Electric Power University, Beijing, China, 2017.
    34. 34)
      • 5. Morozionkov, J., Virbalis, J.A.: ‘Magnetic field of power plant a reactor’, J. Electr. Eng., 2007, 7, pp. 6770.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2019.1582
Loading

Related content

content/journals/10.1049/iet-gtd.2019.1582
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading