access icon free Transient stability assessment combined model framework based on cost-sensitive method

The real-time transient stability assessment (TSA) is critical for emergency control of power systems. Accurate and fast TSA can provide an important basis for post-fault control of power systems. At present, the accuracy of the evaluation model based on machine learning is very high, but there are still some misjudgements in the results. In order to build a high-accuracy evaluation model, a novel frame based on the cost-sensitive method is proposed. Firstly, a deep belief network (DBN) is applied to build a TSA frame. The DBN is effectively trained by means of pre-training and fine tuning. Secondly, two models with the opposite preference are constructed based on the cost-sensitive method. Based on the output results of the two models, the deterministic or uncertain evaluation results are obtained. The samples that may be misclassified are divided into uncertain evaluation results. Thus, the accuracy of the deterministic evaluation results can be improved greatly. Through this design, the practicability of the evaluation model based on machine learning is greatly improved. The effectiveness of the proposed scheme is verified by the simulation results in the IEEE-39 bus system and a realistic regional system.

Inspec keywords: power system transient stability; learning (artificial intelligence); belief networks; power engineering computing

Other keywords: output results; real-time transient stability assessment; cost-sensitive method; post-fault control; IEEE-39 bus system; high-accuracy evaluation model; DBN; deterministic evaluation results; emergency control; power systems; transient stability assessment combined model framework; machine learning; TSA frame; uncertain evaluation results

Subjects: Other topics in statistics; Power engineering computing; Other topics in statistics; Power system control; Knowledge engineering techniques

References

    1. 1)
      • 27. Hinton, G.E., Osindero, S., Teh, Y.: ‘A fast learning algorithm for deep belief nets’, Neural Comput., 2006, 18, (7), pp. 15271554.
    2. 2)
      • 23. Zhang, L., Zhang, D.: ‘Evolutionary cost-sensitive extreme learning machine’, IEEE Trans. Neural Netw. Learn. Syst., 2016, 28, (12), pp. 30453060.
    3. 3)
      • 8. Siddiqui, S.A., Verma, K., Niazi, K.R., et al: ‘Real-time monitoring of post-fault scenario for determining generator coherency and transient stability through ANN’, IEEE Trans. Ind. Appl., 2018, 54, (1), pp. 685692.
    4. 4)
      • 20. James, J.Q., Hill, D.J., Lam, A.Y.S., et al: ‘Intelligent time-adaptive transient stability assessment system’, IEEE Trans. Power Syst., 2017, 33, (1), pp. 10491058.
    5. 5)
      • 13. You, D., Wang, K., Ye, L., et al: ‘Transient stability assessment of power system using support vector machine with generator combinatorial trajectories inputs’, Int. J. Electr. Power Energy Syst., 2013, 44, (1), pp. 318325.
    6. 6)
      • 11. He, M., Zhang, J., Vittal, V.: ‘Robust online dynamic security assessment using adaptive ensemble decision-tree learning’, IEEE Trans. Power Syst., 2013, 28, (4), pp. 40894098.
    7. 7)
      • 2. He, P., Wen, B., Wang, H.: ‘Decentralized adaptive under frequency load shedding scheme based on load information’, IEEE Access, 2019, 7, pp. 5200752014.
    8. 8)
      • 15. Tang, Y., Li, F., Wang, Q., et al: ‘Hybrid method for power system transient stability prediction based on two-stage computing resources’, IET Gener. Transm. Distrib., 2018, 12, (8), pp. 16971703.
    9. 9)
      • 1. Rezkalla, M.M., Pertl, M., Marinelli, M., et al: ‘Electric power system inertia: requirements, challenges and solutions’, Electr. Eng., 2018, 100, (4), pp. 26772693.
    10. 10)
      • 3. Tielens, P., Van Hertem, D.: ‘The relevance of inertia in power systems’, Renew. Sustain. Energy Rev., 2016, 55, (55), pp. 9991009.
    11. 11)
      • 4. Maksimovic, D., Stankovic, A.M., Thottuvelil, V.J., et al: ‘Modeling and simulation of power electronic converters’, Proc. IEEE, 2001, 89, (6), pp. 898912.
    12. 12)
      • 25. Zhao, P., Zhang, Y., Wu, M., et al: ‘Adaptive cost-sensitive online classification’, IEEE Trans. Knowl. Data Eng., 2019, 31, (2), pp. 214228.
    13. 13)
      • 10. Rahmatian, M., Chen, Y.C., Palizban, A., et al: ‘Transient stability assessment via decision trees and multivariate adaptive regression splines’, Electr. Power Syst. Res., 2017, 142, pp. 320328.
    14. 14)
      • 5. Vu, T.L., Turitsyn, K.: ‘Lyapunov functions family approach to transient stability assessment’, IEEE Trans. Power Syst., 2015, 31, (2), pp. 12691277.
    15. 15)
      • 21. Zhou, Y., Guo, Q., Sun, H., et al: ‘A novel data-driven approach for transient stability prediction of power systems considering the operational variability’, Int. J. Electr. Power Energy Syst., 2019, 107, pp. 379394.
    16. 16)
      • 14. Wang, B., Fang, B., Wang, Y., et al: ‘Power system transient stability assessment based on big data and the core vector machine’, IEEE Trans. Smart Grid, 2016, 7, (5), pp. 25612570.
    17. 17)
      • 17. Zhang, R., Wong, K.P., Xu, Y., et al: ‘Post-disturbance transient stability assessment of power systems by a self-adaptive intelligent system’, IET Gener. Transm. Distrib., 2015, 9, (3), pp. 296305.
    18. 18)
      • 18. Cepeda, J.C., Rueda, J.L., Colomé, D.G., et al: ‘Data-mining-based approach for predicting the power system post-contingency dynamic vulnerability status’, Int. Trans. Electr. Energy Syst., 2015, 25, (10), pp. 25152546.
    19. 19)
      • 6. Mishra, C., Pal, A., Thorp, J.S., et al: ‘Transient stability assessment (TSA) of prone-to-trip renewable generation (RG)-rich power systems using Lyapunov's direct method’, IEEE Trans. Sustain. Energy, 2019, 10, pp. 15231533.
    20. 20)
      • 19. Mahdi, M., Genc, V.M.I.: ‘Post-fault prediction of transient instabilities using stacked sparse autoencoder’, Electr. Power Syst. Res., 2018, 164, pp. 243252.
    21. 21)
      • 29. ‘TSAT (transient security assessment tool) manual’ (Powertech Labs Inc., Canada, 2004).
    22. 22)
      • 12. Geeganage, J., Annakkage, U.D., Weekes, T., et al: ‘Application of energy-based power system features for dynamic security assessment’, IEEE Trans. Power Syst., 2014, 30, (4), pp. 19571965.
    23. 23)
      • 30. Athay, T., Podmore, R., Virmani, S.: ‘A practical method for the direct analysis of transient stability’, IEEE Trans. Power Appar. Syst., 1979, PAS-98, (2), pp. 573584.
    24. 24)
      • 16. Guo, T., Milanovic, J.V.: ‘Online identification of power system dynamic signature using PMU measurements and data mining’, IEEE Trans. Power Syst., 2016, 31, (3), pp. 17601768.
    25. 25)
      • 24. Khan, S.H., Hayat, M., Bennamoun, M., et al: ‘Cost-sensitive learning of deep feature representations from imbalanced data’, IEEE Trans. Neural Netw. Learn. Syst., 2018, 29, (8), pp. 35733587.
    26. 26)
      • 22. Guoli, Z., Qingwu, G., Wenxiao, Q., et al: ‘Power system transient voltage stability assessment based on kernel principal component analysis and DBN’. Int. Conf. of Artificial Intelligence, Medical Engineering, Education, Moscow, Russia, 2018, pp. 713728.
    27. 27)
      • 28. Hinton, G.E.: ‘Reducing the dimensionality of data with neural networks’, Science, 2006, 313, (5786), pp. 504507.
    28. 28)
      • 7. Huang, T., Wang, J.: ‘A practical method of transient stability analysis of stochastic power systems based on EEAC’, Int. J. Electr. Power Energy Syst., 2019, 107, pp. 167176.
    29. 29)
      • 26. Aurelio, Y.S., de Almeida, G.M., de Castro, C.L., et al: ‘Learning from imbalanced data sets with weighted cross-entropy function’, Neural Process. Lett., 2019, 50, pp. 19371949.
    30. 30)
      • 9. Hashiesh, F., Mostafa, H.E., Khatib, A., et al: ‘An intelligent wide area synchrophasor based system for predicting and mitigating transient instabilities’, IEEE Trans. Smart Grid, 2012, 3, (2), pp. 645652.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2019.1562
Loading

Related content

content/journals/10.1049/iet-gtd.2019.1562
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading