access icon free Incorporation of generator maintenance scheduling with long-term power sector forecasting and planning studies

The objective of this study is to propose a dynamic generator maintenance scheduling (GMS) algorithm for long-term power sector forecasting and planning studies in which electricity price and the resulting supply composition are determined with merit-order dispatch. Compatible with the GMS algorithm, a reasonable strategy for the utilisation of storage hydropower plants along with clear definitions for each stage including must-run renewable electricity generation modelling, calculation of reserve capacity, derivation of scenarios for storage hydropower plants and problem formulation is presented. Generation from storage hydropower plants are modelled such as must-run and price-dependent parts, to better approximate reality. The proposed structure is tested with real data of the Turkish system, with a demand and capacity projection in the long term. The results are compared with the actual maintenance plan of the base year and the general profile is evaluated as satisfactory. The results show that the GMS plan and profile may significantly change based on hydro and renewable generation expectation, future capacity evolution, and storage hydropower plant utilisation. Therefore, the proposed GMS algorithm can be utilised especially in long-term price forecasting and supply modelling studies, instead of using a fixed factor to represent the maintenance effect on available generation capacity.

Inspec keywords: hydroelectric generators; power generation planning; power generation economics; maintenance engineering; power generation scheduling; power markets; load forecasting

Other keywords: GMS algorithm; price-dependent parts; long-term power sector forecasting; reserve capacity calculation; merit-order dispatch; renewable generation expectation; storage hydropower plant utilisation; storage hydropower plants; long-term price forecasting; electricity price; Turkish system; maintenance effect; renewable electricity generation modelling; actual maintenance planning studies; dynamic generator maintenance scheduling algorithm

Subjects: Power system planning and layout; Hydroelectric power stations and plants; Power system management, operation and economics

References

    1. 1)
      • 25. McPherson, M., Karney, B.: ‘Long-term scenario alternatives and their implications: LEAP model application of Panama's electricity sector’, Energy Policy, 2014, 68, pp. 146157.
    2. 2)
      • 26. Emodi, N.V., Emodi, C.C., Murthy, G.P., et al: ‘Energy policy for low carbon development in Nigeria: A LEAP model’, Renew. Sustain. Energy Rev., 2017, 68, pp. 247261.
    3. 3)
      • 33. Gjelsvik, A., Mo, B., Haugstad, A.: ‘Long- and medium-term operations planning and stochastic modelling in hydro-dominated power systems based on stochastic dual dynamic programming’, in ‘Handbook of power systems-I’ (Springer, Berlin, Heidelberg, Germany, 2010), pp. 3355.
    4. 4)
      • 8. Wang, Y., Kirschen, D.S., Zhong, H., et al: ‘Coordination of generation maintenance scheduling in electricity markets’, IEEE Trans. Power Syst., 2016, 31, (6), pp. 45654574.
    5. 5)
      • 5. Leou, R.-C.: ‘A flexible unit maintenance scheduling considering uncertainties’, IEEE Trans. Power Syst., 2001, 3, (16), pp. 552559.
    6. 6)
      • 9. Conejo, A., Garcia-Bertrand, R., Diaz-Salazar, M.: ‘Generation maintenance scheduling in restructured power systems’, IEEE Trans. Power Syst., 2005, 20, (2), pp. 984992.
    7. 7)
      • 21. Pereira, S., Ferreira, P., Vaz, A.: ‘Generation expansion planning with high share of renewables of variable output’, Appl. Energy, 2017, 190, pp. 12751288.
    8. 8)
      • 31. Maizi, N., Assoumou, E., Bordier, M., et al: ‘Key features of the electricity production sector through long-term planning: the French case’. 2006 IEEE PES Power Systems Conf. and Exposition, Atlanta, GA, USA, 2006.
    9. 9)
      • 23. Pina, A., Silva, C.A., Ferrão, P.: ‘High-resolution modeling framework for planning electricity systems with high penetration of renewables’, Appl. Energy, 2013, 112, pp. 215223.
    10. 10)
      • 18. Eygelaar, J., Lötter, D., van Vuuren, J.: ‘Generator maintenance scheduling based on the risk of power generating unit failure’, Electr. Power Energy Syst., 2018, 95, pp. 8395.
    11. 11)
      • 13. Gonzalez, C., Juan, J.: ‘Leveling reliability in systems with large hydro resources’, IEEE Trans. Power Syst., 1999, 14, (1), pp. 2328.
    12. 12)
      • 34. Steuer, R.E.: ‘Multiple criteria optimization: theory, computation, and application’ (Wiley, Hoboken, NJ, USA, 1989).
    13. 13)
      • 15. Sadeghian, O., Oshnoei, A., Nikkhah, S., et al: ‘Multi-objective optimisation of generation maintenance scheduling in restructured power systems based on global criterion method’, IET Smart Grid, 2019, 2, (2), pp. 203213.
    14. 14)
      • 24. Pina, A., Silva, C., Ferrao, P.: ‘Modeling hourly electricity dynamics for policy making in long-term scenarios’, Energy Policy, 2011, 39, pp. 46924702.
    15. 15)
      • 17. Lakshminarayanan, S., Kaur, D.: ‘Optimal maintenance scheduling of generator units using discrete integer cuckoo search optimization algorithm’, Swarm. Evol. Comput., 2018, 42, pp. 8998.
    16. 16)
      • 32. İlseven, E., Göl, M.: ‘Hydro-optimization-based medium-term price forecasting considering demand and supply uncertainty’, IEEE Trans. Power Syst., 2018, 33, (4), pp. 40744083.
    17. 17)
      • 14. Helseth, A., Fodstad, M., Mo, B.: ‘Optimal hydropower maintenance scheduling in liberalized markets’, IEEE Trans. Power Syst., 2018, 33, (6), pp. 69896998.
    18. 18)
      • 7. Juan, J., Ortega, I.: ‘Reliability analysis for hydrothermal generating systems including the effect of maintenance scheduling’, IEEE Trans. Power Syst., 1997, 12, (4), pp. 15611568.
    19. 19)
      • 30. Haydt, G., Leal, V., Pina, A., et al: ‘The relevance of the energy resource dynamics in the mid/long-term energy planning models’, Renew. Energy, 2011, 36, (11), pp. 30683074.
    20. 20)
      • 4. Froger, A., Gendreau, M., Mendoza, J.E., et al: ‘Maintenance scheduling in the electricity industry: a literature review’, Eur. J. Oper. Res., 2016, 251, pp. 695706.
    21. 21)
      • 22. Olsina, F., Garcés, F., Haubrich, H.-J.: ‘Modeling long-term dynamics of electricity markets’, Energy Policy, 2006, 34, (12), pp. 14111433.
    22. 22)
      • 6. Lee, Y., Choi, J., Jung, M.: ‘User friendly generator maintenance scheduling simulation system based on probabilistic methodology’. 2016 Int. Conf. on Probabilistic Methods Applied to Power Systems (PMAPS), Beijing, People's Republic of China, 2016, pp. 16.
    23. 23)
      • 1. Burke, E., Smith, A.: ‘Hybrid evolutionary techniques for the maintenance scheduling problem’, IEEE Trans. Power Syst., 2000, 15, (1), pp. 122128.
    24. 24)
      • 29. Pereira, A.J., Saraiva, J.T.: ‘Generation expansion planning (GEP) – a long-term approach using system dynamics and genetic algorithms (GAs)’, Energy, 2011, 36, (8), pp. 51805199.
    25. 25)
      • 10. Rodríguez, J.A., Anjos, M.F., Côté, P., et al: ‘MILP formulations for generator maintenance scheduling in hydropower systems’, IEEE Trans. Power Syst., 2018, 33, (6), pp. 61716180.
    26. 26)
      • 27. Perwez, U., Sohail, A., Hassan, S.F., et al: ‘The long-term forecast of Pakistan's electricity supply and demand: an application of long range energy alternatives planning’, Energy, 2015, 93, pp. 24232435.
    27. 27)
      • 12. Moro, L.M., Ramos, A.: ‘Goal programming approach to maintenance scheduling of generating units in large scale power systems’, IEEE Trans. Power Syst., 1999, 14, (3), pp. 10211028.
    28. 28)
      • 11. Foong, W.K., Simpson, A.R., Maier, H.R., et al: ‘Ant colony optimization for power plant maintenance scheduling optimization – a five-station hydropower system’, Ann. Oper. Res., 2008, 159, (1), pp. 433450.
    29. 29)
      • 28. Santos, H.L., Legey, L.F.: ‘A model for long-term electricity expansion planning with endogenous environmental costs’, Int. J. Electr. Power Energy Syst., 2013, 51, pp. 98105.
    30. 30)
      • 20. Lohmann, T.: ‘Long-term power generation expansion planning with short-term demand response: model, algorithms, implementation and electricity policies’. PhD thesis, Coloroda School of Mines, 2015.
    31. 31)
      • 2. Dopazo, J., Merrill, H.: ‘Optimal generator maintenance scheduling using integer programming’, IEEE Trans. Power Appar. Syst., 1975, 94, (5), pp. 15371545.
    32. 32)
      • 3. Mukerji, R., Merrill, H., Erickson, B., et al: ‘Power plant maintenance scheduling: optimizing economics and reliability’, IEEE Trans. Power Syst., 1991, 6, (2), pp. 476483.
    33. 33)
      • 19. Basciftci, B., Ahmed, S., Gebraeel, N.Z., et al: ‘Stochastic optimization of maintenance and operations schedules under unexpected failures’, IEEE Trans. Power Syst., 2018, 33, (6), pp. 67556765.
    34. 34)
      • 35. Miettinen, K.: ‘Nonlinear multiobjective optimization’ (Springer Science & Business Media, New York, NY, USA, 1999).
    35. 35)
      • 16. Mazidi, P., Tohidi, Y., Ramos, A., et al: ‘Profit-maximization generation maintenance scheduling through bi-level programming’, Eur. J. Oper. Res., 2018, 264, pp. 10451057.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2019.1545
Loading

Related content

content/journals/10.1049/iet-gtd.2019.1545
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading