access icon openaccess Machine-learning-based reliability evaluation framework for power distribution networks

Reliability evaluation of power distribution systems is a well-studied and understood problem, but topology analysis efficiency and failure feature description are still limiting the practical application of reliability evaluation in distribution systems. One approach the authors proposed in this study is to incorporate the machine-learning technique into the simulation-based reliability evaluation method, and assess the system reliability in an empirical fashion. In this study, a framework for performing the machine-learning-based reliability evaluation, and corresponding modelling processes are first established. Then, by inducing a supervised learning algorithm named perceptron, a state-space classification-based (SSC) method for system state assessment, the core procedure of reliability evaluation, is proposed. On this basis, a reliability evaluation algorithm combining the SSC-based system state assessment and sequential Monte Carlo simulation is proposed, where the workload of topology analysis required in conventional reliability evaluation methods can be released. Furthermore, extensive case studies are conducted on the Roy Billinton Test System (RBTS) bus 2 system and an actual distribution system to verify the proposed models and algorithms. Results show that the proposed framework supports a more efficient reliability evaluation pattern while ensuring the evaluation accuracy.

Inspec keywords: Monte Carlo methods; power distribution reliability; power system reliability; reliability; learning (artificial intelligence); telecommunication network reliability; pattern classification

Other keywords: evaluation accuracy; machine-learning-based reliability evaluation framework; supervised learning algorithm named perceptron; reliability evaluation algorithm; conventional reliability evaluation methods; efficient reliability evaluation pattern; failure feature description; state-space classification-based method; topology analysis efficiency; system reliability; power distribution systems; machine-learning technique; simulation-based reliability evaluation method; power distribution networks; actual distribution system; SSC-based system state assessment; RBTS bus 2 system

Subjects: Knowledge engineering techniques; Reliability; Distribution networks

References

    1. 1)
      • 9. Li, G., Zhang, P., Luh, P.B., et al: ‘Risk analysis for distribution systems in the northeast U.S. Under wind storms’, IEEE Trans. Power Syst., 2014, 29, (2), pp. 889898.
    2. 2)
      • 15. Bie, Z., Zhang, P., Li, G., et al: ‘Reliability evaluation of active distribution systems including microgrids’, IEEE Trans. Power Syst., 2012, 27, (4), pp. 23422350.
    3. 3)
      • 5. Bessani, M., Fanucchi, R.Z., Delbem, A.C.C., et al: ‘Impact of operators’ performance in the reliability of cyber-physical power distribution systems’, IET Gener. Transm. Distrib., 2016, 10, (11), pp. 26402646.
    4. 4)
      • 26. Pan, Q., Dias, D.: ‘An efficient reliability method combining adaptive support vector machine and Monte Carlo simulation’, Struct. Saf., 2017, 67, pp. 8595.
    5. 5)
      • 2. Farzin, H., Fotuhi-Firuzabad, M., Moeini-Aghtaie, M.: ‘Role of outage management strategy in reliability performance of multi-microgrid distribution systems’, IEEE Trans. Power Syst., 2017, 33, (3), pp. 23592369.
    6. 6)
      • 1. Li, W.: ‘Reliability assessment of electric power systems using Monte Carlo methods’ (Springer Science & Business Media, New York, NY, USA, 2013).
    7. 7)
      • 24. Cai, B., Kong, X., Liu, Y., et al: ‘Application of Bayesian networks in reliability evaluation’, IEEE Trans. Ind. Inf., 2018, 15, (4), pp. 21462157.
    8. 8)
      • 13. Billinton, R., Wang, P.: ‘Reliability network equivalent approach to distribution system reliability evaluation’, IEE Proc. Gener. Transm. Distrib., 1998, 145, (2), pp. 149153.
    9. 9)
      • 25. Cai, B., Shao, X., Liu, Y., et al: ‘Remaining useful life estimation of structure systems under the influence of multiple causes: subsea pipelines as a case study’, IEEE Trans. Ind. Electron., 2020, 67, (7), pp. 57375740.
    10. 10)
      • 11. Billinton, R.: ‘Power system reliability evaluation’ (Taylor & Francis, New York, NY, USA, 1970).
    11. 11)
      • 28. Xie, K., Zhou, J., Billinton, R.: ‘Reliability evaluation algorithm for complex medium voltage electrical distribution networks based on the shortest path’, IEE Proc. Gener. Transm. Distrib., 2003, 150, (6), pp. 686690.
    12. 12)
      • 29. Goodfellow, I., Bengio, Y., Courville, A.: ‘Deep learning’ (MIT press, Cambridge, MA, USA, 2016).
    13. 13)
      • 7. Allan, R.N., Billinton, R., Sjarief, I., et al: ‘A reliability test system for educational purposes – basic distribution system data and results’, IEEE Trans. Power Syst., 1991, 6, (2), pp. 813820.
    14. 14)
      • 6. Liu, W., Gong, Q., Han, H., et al: ‘Reliability modeling and evaluation of active cyber-physical distribution system’, IEEE Trans. Power Syst., 2018, 33, (6), pp. 70967108.
    15. 15)
      • 20. Pindoriya, N.M., Jirutitijaroen, P., Srinivasan, D., et al: ‘Composite reliability evaluation using Monte Carlo simulation and least-squares support vector classifier’, IEEE Trans. Power Syst., 2011, 26, (4), pp. 24832490.
    16. 16)
      • 30. Nair, V., Hinton, G.E.: ‘Rectified linear units improve restricted Boltzmann machines’. Proc. 27th Int. Conf. Machine Learning (ICML-10), Haifa, Israel, 2010, pp. 807814.
    17. 17)
      • 27. Hamilton, W.L., Ying, R., Leskovec, J.: ‘Representation learning on graphs: methods and applications’, 2017, pp. 124.
    18. 18)
      • 22. Benidris, M., Elsaiah, S., Mitra, J.: ‘Power system reliability evaluation using a state-space classification technique and particle swarm optimisation search method’, IET Gener. Transm. Distrib., 2015, 9, (14), pp. 18651873.
    19. 19)
      • 12. Guo, Y.: ‘Power system reliability analysis’ (Tingshua University, Beijing, 2003).
    20. 20)
      • 31. Abadi, M., Barham, P., Chen, J., et al: ‘TensorFlow: a system for large-scale machine learning’. 12th {USENIX} Symp. Operating Systems Design and Implementation ({OSDI} 16), Savannah, GA, USA, 2016, pp. 265283.
    21. 21)
      • 14. Wang, C., Zhang, T., Luo, F., et al: ‘Fault incidence matrix-based reliability evaluation method for complex distribution system’, IEEE Trans. Power Syst., 2018, 33, (6), pp. 67366745.
    22. 22)
      • 4. Jia, H., Ding, Y., Song, Y., et al: ‘Reliability evaluation for distribution systems considering flexible loads utilizing time-sequential simulation techniques’. 2016 Int. Conf. Probabilistic Methods Applied to Power Systems (PMAPS), Beijing, People's Republic of China, 2016, pp. 16.
    23. 23)
      • 8. Schneider, K.P., Mather, B.A., Pal, B.C., et al: ‘Analytic considerations and design basis for the IEEE distribution test feeders’, IEEE Trans. Power Syst., 2017, 33, (3), pp. 31813188.
    24. 24)
      • 17. Murphy, K.P.: ‘Machine learning: a probabilistic perspective’ (MIT Press, Cambridge, MA, USA, 2012).
    25. 25)
      • 10. Bie, Z., Zhang, P., Li, G., et al: ‘Reliability evaluation of active distribution systems including microgrids’, IEEE Trans. Power Syst., 2012, 27, (4), pp. 23422350.
    26. 26)
      • 23. Rocco, C.M., Moreno, J.A.: ‘Fast Monte Carlo reliability evaluation using support vector machine’, Reliab. Eng. Syst. Saf., 2002, 76, (3), pp. 237243.
    27. 27)
      • 16. Hastie, T., Tibshirani, R., Friedman, J., et al: ‘The elements of statistical learning: data mining, inference and prediction’, Math. Intell., 2005, 27, (2), pp. 8385.
    28. 28)
      • 21. Yong, P., Zhang, N., Kang, C., et al: ‘MPLP-based fast power system reliability evaluation using transmission line status dictionary’, IEEE Trans. Power Syst., 2018, 34, (2), pp. 16301640.
    29. 29)
      • 18. Jordan, M.I., Mitchell, T.M.: ‘Machine learning: trends, perspectives, and prospects’, Science (80), 2015, 349, (6245), pp. 255260.
    30. 30)
      • 19. Leite da Silva, A.M., de Resende, L.C., da Fonseca Manso, L.A., et al: ‘Composite reliability assessment based on Monte Carlo simulation and artificial neural networks’, IEEE Trans. Power Syst., 2007, 22, (3), pp. 12021209.
    31. 31)
      • 3. Chen, Y., Zheng, Y., Luo, F., et al: ‘Reliability evaluation of distribution systems with mobile energy storage systems’, IET Renew. Power Gener., 2016, 10, (10), pp. 15621569.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2019.1520
Loading

Related content

content/journals/10.1049/iet-gtd.2019.1520
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading