access icon free Start-up circuit for an electric vehicle fast charger using SSICL technique and a slow estimator

With the increase in power rating of electric vehicle chargers, concerns regarding their integration to the grid have likewise grown. This paper investigates a novel technique for start-up of high-power fast electric vehicle (EV) charger using a solid-state inrush current limiter (SSICL). The circuit consists of three similar sets of bidirectional switch and limiting resistor that utilizes a control strategy based on a simple Kalman filter (KF) to suppress the converter start-up current and transient over-voltages. In fact, the built-up profile of the inrush current is dictated in accordance with the estimated current by the slow dynamic KF. Compared to alternatives, such as start-up resistors, the presented SSICL achieves faster start-up with comparable peak current, tends to provide lower distortion, and provides a good balance between speed and efficiency. Simulation and experimental results confirm that the proposed method can considerably suppress inrush currents, while improving the total harmonic distortion. Comparing the behaviour of the SSICL to other relevant techniques underlines the advantages of the proposed solution. Furthermore, although the focus of this paper is start-up of the fast EV chargers, the proposed circuit can act as an inrush-current limiter in most AC to DC converter structures.

Inspec keywords: switching convertors; power grids; battery chargers; battery powered vehicles; harmonic distortion; current limiters; DC-DC power convertors; Kalman filters

Other keywords: total harmonic distortion; solid-state inrush-current limiter; charging process; slow estimator; Kalman filter; high-power fast EV charger; limiting resistor; power rating; inrush current; control strategy; SSICL technique; slow dynamic KF; transient over-voltages; soft start-up; start-up resistors; fast EV chargers; electric vehicle chargers; bidirectional switch; converter start

Subjects: Control of electric power systems; Filtering methods in signal processing; Transportation; Protection apparatus; DC-DC power convertors

References

    1. 1)
      • 23. Tseng, S.T., Chen, J.F.: ‘Capacitor energising transient limiter for mitigating capacitor switch-on transients’, IET Electr. Power Appl., 2011, 5, (3), pp. 260266.
    2. 2)
      • 8. Musavi, F., Eberle, W., Dunford, W.G.: ‘A high-performance single-phase bridgeless interleaved PFC converter for plug-in hybrid electric vehicle battery chargers’, IEEE Trans. Ind. Appl., 2011, 47, (4), pp. 18331843.
    3. 3)
      • 26. Tseng, H.T., Chen, J.F.: ‘Study of capacitor energising transient limiter with a half-wave rectifying compensating voltage system’, IET Power Electron., 2012, 5, (7), pp. 12171225.
    4. 4)
      • 43. Vasiladiotis, M., Rufer, A.: ‘A modular multiport power electronic transformer with integrated split battery energy storage for versatile ultrafast EV charging stations’, IEEE Trans. Ind. Electron., 2015, 62, (5), pp. 32133222.
    5. 5)
      • 24. Ghanbari, T., Farjah, E., Naseri, F.: ‘Three-phase resistive capacitor switching transient limiter for mitigating power capacitor switching transients’, IET Gener. Transm. Distrib., 2016, 10, (1), pp. 142153.
    6. 6)
      • 35. Abdulsalam, S.G., Xu, W.: ‘Sequential phase energisation technique for capacitor switching transient reduction’, IET Gener. Transm. Distrib., 2007, 1, (4), pp. 596602.
    7. 7)
      • 31. Chiappori, G., Le Moigne, Ph., Delarue, Ph., et al: ‘Low cost linear current limiter for stop-start vehicles’. 2014 IEEE 23rd Int. Symp. on Industrial Electronics (ISIE), Istanbul, Turkey, 2014.
    8. 8)
      • 1. Su, S., Hu, Y., Wang, S., et al: ‘Reactive power compensation using electric vehicles considering drivers’ reasons’, IET Gener. Transm. Distrib., 2018, 12, (20), pp. 44074418.
    9. 9)
      • 29. Mitter, C.S.: ‘Active inrush current limiting using MOSFETs’. Motorola Inc., Editor, USA, 1995, p. 9.
    10. 10)
      • 14. Liu, H., Li, Y., Liu, K., et al: ‘Extended quasi-Y-source inverter with suppressed inrush and leakage effects’, IET Power Electron., 2019, 12, (4), pp. 719728.
    11. 11)
      • 12. Cresswell, C.E., Djokic, S.Z.: ‘The analysis of the occurrence of high in-rush currents in DC power supplies’. 2008 4th IET Conf. on Power Electronics, Machines and Drives, York, UK, 2008.
    12. 12)
      • 28. Jinn-Chang, W., Hurng-Liahng, J., Kuen-Der, W., et al: ‘Hybrid switch to suppress the inrush current of AC power capacitor’, IEEE Trans. Power Deliv., 2005, 20, (1), pp. 506511.
    13. 13)
      • 45. Monteiro, V., Ferreira, J.C., Nogueiras Meléndez, A.A., et al: ‘Experimental validation of a novel architecture based on a dual-stage converter for off-board fast battery chargers of electric vehicles’, IEEE Trans. Veh. Technol., 2018, 67, (2), pp. 10001011.
    14. 14)
      • 15. Shi, X., Liu, B., Wang, Z., et al: ‘Modelling, control design and analysis of a startup scheme for modular multilevel converters’, IEEE Trans. Ind. Electron., 2015, 62, (11), pp. 70097024.
    15. 15)
      • 11. Shu-Ting, T., Jiann-Fuh, C.: ‘A novel method for mitigating the capacitor switching-on transients’. 2010 20th Australasian Universities Power Engineering Conf. (AUPEC), Christchurch, New Zealand, 2010.
    16. 16)
      • 20. Riyaz, A., Iqbal, A., Moinoddin, S., et al: ‘Comparative performance analysis of Thyristor and IGBT based induction motor soft starters’, Int. J. Eng. Sci. Technol., 2009, 1, (1), pp. 90105.
    17. 17)
      • 10. Swamy, M., Kume, T.J., Takada, N.: ‘Evaluation of an alternate soft charge circuit for diode front end variable frequency drives’. IEEE Energy Conversion Congress and Exposition, 2009. ECCE 2009, San Jose, CA, USA, 2009.
    18. 18)
      • 21. Ghanbari, T., Farjah, E.: ‘Efficient resonant-type transformer inrush current limiter’, IET Electr. Power Appl., 2012, 6, (7), pp. 429436.
    19. 19)
      • 39. Jacques, S., Reymond, C., Benabdelaziz, G., et al: ‘A relevant inrush current limitation based on SCRs’ smart control used in EV battery chargers’, 2017.
    20. 20)
      • 32. Fernández, M., Perpiñá, X., Vellvehi, M., et al: ‘Analysis of solid state relay solutions based on different semiconductor technologies’. 2017 19th European Conf. on Power Electronics and Applications (EPE'17 ECCE Europe), Warsaw, Poland, 2017.
    21. 21)
      • 40. Nie, J., Zhao, Z., Zhang, Y., et al: ‘A step-variable soft start control method applied to boost type PFC rectifier’. 2016 IEEE Vehicle Power and Propulsion Conf. (VPPC), Hangzhou, People's Republic of China, 2016.
    22. 22)
      • 38. Ghanbari, T., Farjah, E., Zandnia, A.: ‘Solid-state transient limiter for capacitor bank switching transients’, IET Gener. Transm. Distrib., 2013, 7, (11), pp. 12721277.
    23. 23)
      • 46. Tashakor, N., Khooban, M.: ‘An interleaved bi-directional AC–DC converter with reduced switches and reactive power control’, IEEE Trans Circuits Syst II, Express Briefs, 2020, 67, (1), pp. 132136.
    24. 24)
      • 2. Gjelaj, M., Hashemi, S., Traeholt, C., et al: ‘Grid integration of DC fast-charging stations for EVs by using modular li-ion batteries’, IET Gener. Transm. Distrib., 2018, 12, (20), pp. 43684376.
    25. 25)
      • 5. Arabsalmanabadi, B., Javadi, A., Al-Haddad, K.: ‘Analyzing fast charger in the smart grid from power quality's prospecting’. IECON 2017–43rd Annual Conf. of the IEEE Industrial Electronics Society, Beijing, People's Republic of China, 2017.
    26. 26)
      • 25. Mahurkar, T.M., Murali, M.: ‘Suppression of capacitor switching transients using symmetrical structure transient limiter [SSTL] and its applications’. 2014 Int. Conf. on Computation of Power, Energy, Information and Communication (ICCPEIC), Chennai, India, 2014.
    27. 27)
      • 19. Tunyasrirut, S., Wangsilabatra, B., Suksri, T.: ‘Phase control thyristor based soft-starter for a grid connected induction generator for wind turbine system’. 2010 Int. Conf. on Control Automation and Systems (ICCAS), Gyeonggi-do, Republic of Korea, 2010.
    28. 28)
      • 47. Ghanbari, T., Farjah, E., Naseri, F., et al: ‘Solid-state capacitor switching transient limiter based on Kalman filter algorithm for mitigation of capacitor bank switching transients’, Renew. Sustain. Energy Rev., 2018, 90, pp. 10691081.
    29. 29)
      • 3. Deb, S., Tammi, K., Kalita, K., et al: ‘Impact of electric vehicle charging station load on distribution network’, Energies, 2018, 11, (1), p. 178.
    30. 30)
      • 17. Eno, O.A., Thompson, D.S.: ‘Minimising in-rush current at resonant converter start-up’. 2005 European Conf. on Power Electronics and Applications, Dresden, Germany, 2005.
    31. 31)
      • 44. Tan, L., Wu, B., Yaramasu, V., et al: ‘Effective voltage balance control for bipolar-DC-bus-fed EV charging station with three-level DC–DC fast charger’, IEEE Trans. Ind. Electron., 2016, 63, (7), pp. 40314041.
    32. 32)
      • 30. Chien-An, L., Yen-Shin, L.: ‘New AC/DC converter considering both inrush current limitation and start-up time’. 2013 IEEE 10th Int. Conf. on Power Electronics and Drive Systems (PEDS), Kitakyushu, Japan, 2013.
    33. 33)
      • 41. Fan, S., Xue, Z., Guo, Z., et al: ‘VRSPV soft-start strategy and AICS technique for boost converters to improve the start-up performance’, IEEE Trans. Power Electron., 2016, 31, (5), pp. 36633672.
    34. 34)
      • 33. Fuengwarodsakul, N.H.: ‘Battery management system with active inrush current control for Li-ion battery in light electric vehicles’, Electr. Eng., 2016, 98, (1), pp. 1727.
    35. 35)
      • 36. Brunke, J.H., Frohlich, K.J.: ‘Elimination of transformer inrush currents by controlled switching. I. Theoretical considerations’, IEEE Trans. Power Deliv., 2001, 16, (2), pp. 276280.
    36. 36)
      • 27. Hsu-Ting, T., Jiann-Fuh, C.: ‘Single-DC reactor-type transient limiter for reducing three-phase power capacitor switching transients’, IEEE Trans. Power Electron., 2012, 27, (4), pp. 17451757.
    37. 37)
      • 9. Xia, C., Cong, B.: ‘Analysis of inrush current and over-voltage with HVDC AC filters switching on’. 2012 IEEE Power Engineering and Automation Conf. (PEAM), Wuhan, People's Republic of China, 2012.
    38. 38)
      • 4. Aggeler, D., Canales, F., Zelaya-De La Parra, H., et al: ‘Ultra-fast DC-charge infrastructures for EV-mobility and future smart grids’. 2010 IEEE PES Innovative Smart Grid Technologies Conf. Europe (ISGT Europe), Gothenberg, Sweden, 2010.
    39. 39)
      • 34. Saeed, M., Cuartas, J.M., Rodriguez, A., et al: ‘Energization and start-up of CHB-based modular three-stage solid-state transformers’, IEEE Trans. Ind. Appl., 2018, 54, (5), pp. 54835492.
    40. 40)
      • 13. Hata, K., Imura, T., Fujimoto, H., et al: ‘Comparison of soft-starting methods for in-motion charging of electric vehicles to suppress start-up current overshoot in wireless power transfer system’. 2018 IEEE Transportation Electrification Conf. and Expo, Asia-Pacific (ITEC Asia-Pacific), Bangkok, Thailand, 2018.
    41. 41)
      • 22. Tseng, H.T., Chen, J.F.: ‘Voltage compensation-type inrush current limiter for reducing power transformer inrush current’, IET Electr. Power Appl., 2012, 6, (2), pp. 101110.
    42. 42)
      • 7. Justino, J.C.G., Parreiras, T.M., Filho, B.d.J.C.: ‘Hundreds kW charging stations for e-buses operating under regular ultra-fast charging’. 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, 2014.
    43. 43)
      • 37. Brunke, J.H., Frohlich, K.J.: ‘Elimination of transformer inrush currents by controlled switching. II. Application and performance considerations’, IEEE Trans. Power Deliv., 2001, 16, (2), pp. 281285.
    44. 44)
      • 16. Fei, C., Lee, F.C., Li, Q.: ‘Digital implementation of soft start-up and short-circuit protection for high-frequency LLC converters with optimal trajectory control (OTC)’, IEEE Trans. Power Electron., 2017, 32, (10), pp. 80088017.
    45. 45)
      • 6. Vasiladiotis, M., Rufer, A.: ‘A modular multiport power electronic transformer with integrated split battery energy storage for versatile ultrafast EV charging stations’, IEEE Trans. Ind. Electron., 2015, 62, (5), pp. 32133222.
    46. 46)
      • 42. Tu, H., Feng, H., Srdic, S., et al: ‘Extreme fast charging of electric vehicles: a technology overview’, IEEE Trans. Transp. Electrification, 2019, 5, (4), pp. 861878.
    47. 47)
      • 18. Eun-Ju, L., Jung-Hoon, A., Seung-Min, S., et al: ‘Comparative analysis of active inrush current limiter for high-voltage DC power supply system’. 2012 IEEE Vehicle Power and Propulsion Conf. (VPPC), Seoul, Republic of Korea, 2012.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2019.1477
Loading

Related content

content/journals/10.1049/iet-gtd.2019.1477
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading