Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Robust linear model for multi-period AC optimal power flow

In the near future power systems, efficient management of uncertainties with considering the system constraints without any simplification will be a challenge for system operators. Considering AC constraints leads to providing more accurate schedule of generating units, which can have a significant impact on the reduction of operating costs. Although numerous studies have been done to convexify AC optimal power flow constraints, most of the models are non-linear, which can be intractable for large-scale systems. In this study, a novel linear robust AC model is introduced using a combination of the quadratic convex relaxation (QCR) and the Frank–Wolfe algorithm for linearising the AC constraints. The uncertainties are modelled by applying the robust optimisation with recourse to obtain an optimal schedule for the conventional units in multi-period real-time markets. The Benders-dual algorithm is implemented to solve the optimisation problem. The proposed model was applied to the IEEE 3-bus, 118-bus, and 300-bus systems. The results indicate that the proposed algorithm obtains more precise approximation than the QCR method. In addition, the costs and losses of the proposed model are less than those of the conventional robust DC and stochastic models. Furthermore, because the proposed model is linear, its runtime is rational.

References

    1. 1)
      • 18. Jabr, R.A.: ‘Radial distribution load flow using conic programming’, IEEE Trans. Power Syst., 2006, 21, pp. 14581459.
    2. 2)
      • 29. Dong, J., Yang, P., Nie, S.: ‘Day-ahead scheduling model of the distributed small hydro-wind-energy storage power system based on two-stage stochastic robust optimization’, Sustainability, 2019, 11, p. 2829.
    3. 3)
      • 26. Pourahmadi, F., Heidarabadi, H., Hosseini, S. H., et al: ‘Dynamic uncertainty set characterization for bulk power grid flexibility assessment’, IEEE Syst. J., 2019, 14, pp. 718728.
    4. 4)
      • 40. Misener, R., Floudas, C.: ‘Piecewise-linear approximations of multidimensional functions’, J. Optim. Theory Appl., 2010, 145, pp. 120147.
    5. 5)
      • 31. Zeng, B., Zhao, L.: ‘Solving two-stage robust optimization problems using a column-and-constraint generation method’, Oper. Res. Lett., 2013, 41, pp. 457461.
    6. 6)
      • 21. Low, S.H.: ‘Convex relaxation of optimal power flow—part I: formulations and equivalence’, IEEE Trans. Control Netw. Syst., 2014, 1, pp. 1527.
    7. 7)
      • 20. Coffrin, C., Hijazi, H.L., Hentenryck, P.V.: ‘The QC relaxation: a theoretical and computational study on optimal power flow’, IEEE Trans. Power Syst., 2016, 31, pp. 30083018.
    8. 8)
      • 47. Available at http://motor.ece.iit.edu/data/JEAS_IEEE118.doc, accessed June 2017.
    9. 9)
      • 8. Hedman, K.W., Ferris, M.C., Neill, R.P.O', et al: ‘Co-optimization of generation unit commitment and transmission switching with N-1 reliability’, IEEE Trans. Power Syst., 2010, 25, pp. 10521063.
    10. 10)
      • 16. Delgado, J.A., Baptista, E.C., Bregadioli, G.F., et al: ‘A modified barrier and barrier method and the optimal power flow problem’, IEEE Latin Am. Trans., 2017, 15, pp. 16291638.
    11. 11)
      • 28. Qiu, H., Gu, W., Li, P., et al: ‘CRSO approach for microgrid power dispatching’, IET Gener., Transm. Distrib., 2019, 13, (11), pp. 22082215.
    12. 12)
      • 49. Wang, B., Hobbs, B.F.: ‘A flexible ramping product: can it help real-time dispatch markets approach the stochastic dispatch ideal?’, Electr. Power Syst. Res., 2014, 109, pp. 128140.
    13. 13)
      • 30. Conejo, A.J., Castillo, E., Minguez, R., et al: ‘Decomposition techniques in mathematical programming: engineering and science applications’ (Springer, Berlin, Germany, 2006).
    14. 14)
      • 6. Capitanescu, F., Ramos, J.M., Panciatici, P., et al: ‘State-of-the-art, challenges, and future trends in security-constrained optimal power flow’, Electr. Power Syst. Res., 2011, 81, pp. 17311741.
    15. 15)
      • 2. Nicolosi, M.: ‘Wind power integration and power system flexibility–An empirical analysis of extreme events in Germany under the new negative price regime’, Energy. Policy., 2010, 38, pp. 72577268.
    16. 16)
      • 48. Beibei, W., Hobbs, B.F.: ‘Flexiramp market design for real-time operations: can it approach the stochastic optimization ideal?’. 2013 IEEE Power & Energy Society General Meeting, Vancouver, BC, Canada, 2013, pp. 15.
    17. 17)
      • 43. Pirnia, M., O'Neill, R.P., Lipka, P.A., et al: ‘A computational study of linear approximations to the convex constraints in the iterative linear IV-ACOPF formulation’, Fed. Energy Regulatory Comm., 2013, https://www.ferc.gov/industries/electric/indus-act/market-planning/opf-papers/acopf-8-preprocessed-constraints-iliv-acopf.pdf.
    18. 18)
      • 17. Madani, R., Sojoudi, S., Lavaei, J.: ‘Convex relaxation for optimal power flow problem: mesh networks’, IEEE Trans. Power Syst., 2015, 30, pp. 199211.
    19. 19)
      • 35. Bandi, C., Dvijotham, K., Morton, D., et al: ‘Robust optimization and control for electricity generation and transmission’, arXiv preprint arXiv:1803.06984, 2018.
    20. 20)
      • 32. Morales, J.M., Conejo, A.J., Madsen, H., et al: ‘Integrating renewables in electricity markets: operational problems’ (Springer, US, 2013).
    21. 21)
      • 52. de Queiroz, A.R.: ‘A sampling-based decomposition algorithm with application to hydrothermal scheduling: cut formation and solution quality’ (Citeseer, The University of Texas at Austin, 2011).
    22. 22)
      • 14. Min, W., Shengsong, L.: ‘A trust region interior point algorithm for optimal power flow problems’, Int. J. Electr. Power Energy Syst., 2005, 27, pp. 293300.
    23. 23)
      • 41. McCormick, G.P.: ‘Computability of global solutions to factorable non-convex programs: part I – convex underestimating problems’, Math. Program., 1976, 10, pp. 147175.
    24. 24)
      • 38. Luenberger, D.G., Ye, Y.: ‘Linear and non-linear programming’ (Springer International Publishing, Massachusetts, USA, 2015).
    25. 25)
      • 4. Bahrami, S., Amini, M.H., Shafie-khah, M., et al: ‘A decentralized renewable generation management and demand response in power distribution networks’, IEEE Trans. Sustain. Energy, 2018, 9, pp. 17831797.
    26. 26)
      • 24. Sebastián, G.-C.J., Alexander, C.-L.J., Mauricio, G.-E.: ‘Stochastic AC optimal power flow considering the probabilistic behavior of the wind, loads and line parameters’, Ingeniería, Investigación y Tecnología, 2014, 15, pp. 529538.
    27. 27)
      • 3. Holttinen, H., Tuohy, A., Milligan, M., et al: ‘The flexibility workout: managing variable resources and assessing the need for power system modification’, IEEE Power Energy Mag., 2013, 11, pp. 5362.
    28. 28)
      • 10. Safdarian, A., Fotuhi-Firuzabad, M., Lehtonen, M.: ‘Integration of price-based demand response in DisCos’ short-term decision model’, IEEE Trans. Smart Grid, 2014, 5, pp. 22352245.
    29. 29)
      • 33. Velloso, A., Street, A., Pozo, D., et al: ‘Two-stage robust unit commitment for Co-optimized electricity markets: an Adaptive data-driven approach for scenario-based uncertainty sets’, IEEE Trans. Sustain. Energy, 2019, 11, pp. 958969.
    30. 30)
      • 39. Bradley, S., Hax, A., Magnanti, T.: ‘Applied mathematical programming’ (Addison-Wesley, Massachusetts, USA, 1977).
    31. 31)
      • 51. Rockafellar, R.T., Wets, R.J.-B.: ‘Scenarios and policy aggregation in optimization under uncertainty’, Math. Oper. Res., 1991, 16, pp. 119147.
    32. 32)
      • 27. Saber, H., Heidarabadi, H., Moeini-Aghtaie, M., et al: ‘Expansion planning studies of independent-locally operated battery energy storage systems (BESSs): a CVaR-based study’, IEEE Trans. Sustain. Energy, 2019, https://doi.org/10.1109/TSTE.2019.2950591.
    33. 33)
      • 11. Gharebaghi, S., Safdarian, A., Lehtonen, M.: ‘A linear model for AC power flow analysis in distribution networks’, IEEE Syst. J., 2019, 13, pp. 43034312.
    34. 34)
      • 1. EIA, US.: ‘Annual energy outlook 2016: with projections to 2040’, 2016.
    35. 35)
      • 5. Chow, Y., Tamar, A., Mannor, S., et al: ‘Risk-sensitive and robust decision-making: a CVaR optimization approach’. Advances in Neural Information Processing Systems, Montreal, Canada, 2015, pp. 15221530.
    36. 36)
      • 25. Bertsimas, D., Litvinov, E., Sun, X.A., et al: ‘Adaptive robust optimization for the security-constrained unit commitment problem’, IEEE Trans. Power Syst., 2013, 28, pp. 5263.
    37. 37)
      • 37. Halilbašić, L., Pinson, P., Chatzivasileiadis, S.: ‘Convex relaxations and approximations of chance-constrained AC-OPF problems’, IEEE Trans. Power Syst., 2018, 34, pp. 14591470.
    38. 38)
      • 7. Potluri, T., Hedman, K.W.: ‘Impacts of topology control on the ACOPF’. Power and Energy Society General Meeting, 2012 IEEE, San Diego, CA, USA, 2012, pp. 17.
    39. 39)
      • 12. Schenk, O., Wächter, A., Hagemann, M.: ‘Matching-based preprocessing algorithms to the solution of saddle-point problems in large-scale non-convex interior-point optimization’, Comput. Optim. Appl., 2007, 36, pp. 321341.
    40. 40)
      • 15. Baptista, E.C., Belati, E.A., da Costa, G.R.: ‘Logarithmic barrier-augmented Lagrangian function to the optimal power flow problem’, Int. J. Electr. Power Energy Syst., 2005, 27, pp. 528532.
    41. 41)
      • 45. Lorca, A., Sun, X.A.: ‘Adaptive robust optimization with dynamic uncertainty sets for multi-period economic dispatch under significant wind’, IEEE Trans. Power Syst., 2015, 30, pp. 17021713.
    42. 42)
      • 46. Zimmerman, R.D., Murillo-Sánchez, C.E., Thomas, R.J.: ‘MATPOWER: steady-state operations, planning, and analysis tools for power systems research and education’, IEEE Trans. Power Syst., 2010, 26, pp. 1219.
    43. 43)
      • 34. Qin, C., Zeng, Y.: ‘SR-based chance-constrained economic dispatch for power systems with wind power’, IET Gener. Transm. Distrib., 2019, 13, pp. 27792788.
    44. 44)
      • 13. Jabr, R.A.: ‘A primal–dual interior-point method to solve the optimal power flow dispatching problem’, Optim. Eng., 2003, 4, pp. 309336.
    45. 45)
      • 44. Purchala, K., Meeus, L., Van Dommelen, D., et al: ‘Usefulness of DC power flow for active power flow analysis’. Power Engineering Society General Meeting, 2005. IEEE, San Francisco, CA, USA, 2005, pp. 454459.
    46. 46)
      • 42. Frank, M., Wolfe, P.: ‘An algorithm for quadratic programming’, Nav. Res. Logist. Q., 1956, 3, pp. 95110.
    47. 47)
      • 53. Kriegel, H.-P., Schubert, E., Zimek, A.: ‘The (black) art of runtime evaluation: are we comparing algorithms or implementations?’, Knowl. Inf. Syst., 2017, 52, pp. 341378.
    48. 48)
      • 36. Wu, X., Conejo, A.J., Amjady, N.: ‘Robust security-constrained ACOPF via conic programming: identifying the worst contingencies’, IEEE Trans. Power Syst., 2018, 33, pp. 58845891.
    49. 49)
      • 9. Nikoobakht, A., Aghaei, J., Mardaneh, M., et al: ‘Moving beyond the optimal transmission switching: stochastic linearised SCUC for the integration of wind power generation and equipment failures uncertainties’, IET Gener. Transm. Distrib., 2017, 12, pp. 37803792.
    50. 50)
      • 23. Li, F., Bo, R.: ‘DCOPF-based LMP simulation: algorithm, comparison with ACOPF, and sensitivity’, IEEE Trans. Power Syst., 2007, 22, pp. 14751485.
    51. 51)
      • 19. Hijazi, H., Coffrin, C., Hentenryck, P.V.: ‘Convex quadratic relaxations for mixed-integer non-linear programs in power systems’, Math. Program. Comput., 2017, 9, pp. 321367.
    52. 52)
      • 22. Lipka, P., Oren, S.S., O'Neill, R.P., et al: ‘Running a more complete market with the SLP-IV-ACOPF’, IEEE Trans. Power Syst., 2017, 32, pp. 11391148.
    53. 53)
      • 50. Mhanna, S., Verbič, G., Chapman, A.C.: ‘Tight LP approximations for the optimal power flow problem’. 2016 Power Systems Computation Conf. (PSCC), Genoa, Italy, 2016, pp. 17.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2019.1466
Loading

Related content

content/journals/10.1049/iet-gtd.2019.1466
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address