access icon free Wigner distribution function and alienation coefficient-based transmission line protection scheme

This study presents an algorithm for detection, classification, and location of transmission line faults. A fault index based on features extracted from current signals using the alienation coefficient and Wigner distribution function has been proposed for the detection and classification of faults. Double line and double line to ground faults have been classified from each other using ground fault index based on negative sequence current. Statistical relations are proposed for the estimation of fault location using peak values of the proposed fault index. The results of different case studies established the effectiveness of the algorithm. The algorithm is found to be effective for providing protection to transmission line against various faults. This is achieved using current signals recorded on one terminal of the line. This makes the protection scheme less complex, fast and more economic due to the elimination of the requirement of communication channel and global positioning system synchronisation. The proposed protection scheme is also validated on a real-time network of transmission utility. The effectiveness of the algorithm is established by comparing performance with reported algorithms.

Inspec keywords: power transmission protection; power transmission lines; signal classification; fault location; power transmission faults; fault diagnosis; Wigner distribution

Other keywords: ground fault index; current signals; negative sequence current; transmission line fault detection; Wigner distribution function; statistical relations; double line; transmission line fault classification; transmission line fault location; Global Positioning System synchronisation; alienation coefficient-based transmission line protection scheme; transmission utility; communication channel

Subjects: Signal processing and detection; Power system protection; Other topics in statistics; Power transmission, distribution and supply

References

    1. 1)
      • 21. Ahmadimanesh, A., Shahrtash, S.M.: ‘Transient-based fault-location method for multiterminal lines employing S-transform’, IEEE Trans. Power Deliv., 2013, 28, (3), pp. 13731380.
    2. 2)
      • 14. Spielböck, T., Beláň, A.: ‘Design of a one-sided, impedance-based transmission line fault locator using line topology and source impedances’, Electr. Power Syst. Res., 2018, 161, pp. 123138.
    3. 3)
      • 6. Krishnanand, K., Dash, P., Naeem, M.: ‘Detection, classification, and location of faults in power transmission lines’, Int. J. Electr. Power Energy Syst., 2015, 67, pp. 7686. Available at http://www.sciencedirect.com/science/article/pii/S0142061514006942.
    4. 4)
      • 30. Rathore, B.: ‘Alienation based fault detection and classification in transmission lines’. 2015 Annual IEEE India Conf. (INDICON), New Delhi, India, December 2015, pp. 16.
    5. 5)
      • 22. Dash, P.K., Das, S., Moirangthem, J.: ‘Distance protection of shunt compensated transmission line using a sparse S-transform’, IET Gener. Transm. Distrib., 2015, 9, (12), pp. 12641274.
    6. 6)
      • 16. Tong, X., Wen, H.: ‘A novel transmission line fault detection algorithm based on pilot impedance’, Electr. Power Syst. Res., 2020, 179, p. 106062.
    7. 7)
      • 12. Luo, S., Gao, H., Wang, D., et al: ‘Non-unit transient based boundary protection for uhv transmission lines’, Int. J. Electr. Power Energy Syst., 2018, 102, pp. 349363.
    8. 8)
      • 27. Patel, B.: ‘A new FDOST entropy based intelligent digital relaying for detection, classification and localization of faults on the hybrid transmission line’, Electr. Power Syst. Res., 2018, 157, pp. 3947.
    9. 9)
      • 32. Khan, N.A., Taj, I.A., Jaffri, M.N., et al: ‘Cross-term elimination in Wigner distribution based on 2D signal processing techniques’, Adv. Fractional Signals Syst., 2011, 91, (3), pp. 590599.
    10. 10)
      • 2. Fei, C., Qi, G., Li, C.: ‘Fault location on high voltage transmission line by applying support vector regression with fault signal amplitudes’, Electr. Power Syst. Res., 2018, 160, pp. 173179.
    11. 11)
      • 23. Peng, N., Zhou, L., Liang, R., et al: ‘Fault location of transmission lines connecting with short branches based on polarity and arrival time of asynchronously recorded traveling waves’, Electr. Power Syst. Res., 2019, 169, pp. 184194.
    12. 12)
      • 5. de Souza Gomes, A., Costa, M.A., de Faria, T.G.A., et al: ‘Detection and classification of faults in power transmission lines using functional analysis and computational intelligence’, IEEE Trans. Power Deliv., 2013, 28, (3), pp. 14021413.
    13. 13)
      • 10. Chaitanya, B., Yadav, A.: ‘Decision tree aided travelling wave based fault section identification and location scheme for multi-terminal transmission lines’, Measurement, 2019, 135, pp. 312322.
    14. 14)
      • 18. Akmaz, D., Mamiş, M.S., Arkan, M., et al: ‘Transmission line fault location using traveling wave frequencies and extreme learning machine’, Electr. Power Syst. Res., 2018, 155, pp. 17.
    15. 15)
      • 26. Swain, K.B., Mahato, S.S., Cherukuri, M.: ‘Expeditious situational awareness-based transmission line fault classification and prediction using synchronized phasor measurements’, IEEE Access, 2019, 7, pp. 168187168200.
    16. 16)
      • 11. Zhang, G., Shu, H., Lopes, F., et al: ‘Single-ended travelling wave-based protection scheme for double-circuit transmission lines’, Int. J. Electr. Power Energy Syst., 2018, 97, pp. 93105.
    17. 17)
      • 19. Das, S., Singh, S.P., Panigrahi, B.K.: ‘Transmission line fault detection and location using wide area measurements’, Electr. Power Syst. Res., 2017, 151, pp. 96105.
    18. 18)
      • 15. Barbosa, D.C.P., de Medeiros, L.H.A., de Melo, M.T., et al: ‘Machine learning approach to detect faults in anchor rods of power transmission lines’, IEEE Antennas Wirel. Propag. Lett., 2019, 18, (11), pp. 23352339.
    19. 19)
      • 33. Cheng, J.-Y., Huang, S.-J., Hsieh, C.-T.: ‘Application of Gabor–Wigner transform to inspect high-impedance fault-generated signals’, Int. J. Electr. Power Energy Syst., 2015, 73, pp. 192199.
    20. 20)
      • 31. Rathore, B., Shaik, A.G.: ‘Wavelet-alienation based protection scheme for multi-terminal transmission line’, Electr. Power Syst. Res., 2018, 161, pp. 816.
    21. 21)
      • 9. Hasheminejad, S., Seifossadat, S.G., Razaz, M., et al: ‘Ultra-high-speed protection of transmission lines using traveling wave theory’, Electr. Power Syst. Res., 2016, 132, pp. 94103.
    22. 22)
      • 20. Moravej, Z., Movahhedneya, M., Pazoki, M.: ‘Gabor transform-based fault location method for multi-terminal transmission lines’, Measurement, 2018, 125, pp. 667679.
    23. 23)
      • 1. Fathabadi, H.: ‘Novel filter based ann approach for short-circuit faults detection, classification and location in power transmission lines’, Int. J. Electr. Power Energy Syst., 2016, 74, pp. 374383.
    24. 24)
      • 28. Hasan, A.N., Eboule, P.S.P., Twala, B.: ‘The use of machine learning techniques to classify power transmission line fault types and locations’. 2017 Int. Conf. on Optimization of Electrical and Electronic Equipment (OPTIM) 2017 Intl. Aegean Conf. on Electrical Machines and Power Electronics (ACEMP), Brasov, Romania, May 2017, pp. 221226.
    25. 25)
      • 17. Dash, P.K.: ‘A new time–frequency approach for distance protection in parallel transmission lines operating with STATCOM’, Int. J. Electr. Power Energy Syst., 2014, 61, pp. 606619.
    26. 26)
      • 29. Rathore, B., Shaik, A.G.: ‘Wavelet-alienation based transmission line protection scheme’, IET Gener. Transm. Distrib., 2017, 11, (4), pp. 9951003.
    27. 27)
      • 25. Chatterjee, B., Debnath, S.: ‘Sequence component based approach for fault discrimination and fault location estimation in UPFC compensated transmission line’, Electr. Power Syst. Res., 2020, 180, p. 106155.
    28. 28)
      • 24. Ghaedi, A., Golshan, M.E.H., Sanaye-Pasand, M.: ‘Transmission line fault location based on three-phase state estimation framework considering measurement chain error model’, Electr. Power Syst. Res., 2020, 178, p. 106048.
    29. 29)
      • 3. He, Z., Fu, L., Lin, S., et al: ‘Fault detection and classification in EHV transmission line based on wavelet singular entropy’, IEEE Trans. Power Deliv., 2010, 25, (4), pp. 21562163.
    30. 30)
      • 13. Santiago, J., Tavares, M.C.: ‘Analysis of half-wavelength transmission line under critical balanced faults: voltage response and overvoltage mitigation procedure’, Electr. Power Syst. Res., 2019, 166, pp. 99111.
    31. 31)
      • 7. Guillen, D., Paternina, M.R.A., Zamora, A., et al: ‘Detection and classification of faults in transmission lines using the maximum wavelet singular value and euclidean norm’, IET Gener. Transm. Distrib., 2015, 9, (15), pp. 22942302.
    32. 32)
      • 4. Silva, K.M., Souza, B.A., Brito, N.S.D.: ‘Fault detection and classification in transmission lines based on wavelet transform and ann’, IEEE Trans. Power Deliv., 2006, 21, (4), pp. 20582063.
    33. 33)
      • 34. Radojevć, Z., Shin, J.-R., Park, J.-B., et al: ‘Arcing fault detection and fault location on HV transmission lines’, IFAC Proc. Vol., 2005, 38, (1), pp. 245249.
    34. 34)
      • 8. Gopakumar, P., Reddy, M.J.B., Mohanta, D.K.: ‘Transmission line fault detection and localisation methodology using pmu measurements’, IET Gener. Transm. Distrib., 2015, 9, (11), pp. 10331042.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2019.1414
Loading

Related content

content/journals/10.1049/iet-gtd.2019.1414
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading