Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Robust control method for LCL-type shunt active power filter under weak grid condition

This study presents an improved double closed-loop current (fundamental and harmonics current) control method for inductive-capacitive-inductive (LCL) type shunt active power filter (SAPF), which is designed to enhance the robustness of the SAPF system to adapt weak grid application condition. Due to the variation of weak grid impedance, fundamental current control loop based on grid current feedback control method may become unstable, a robust parameters design method in discrete z-domain according to amplitude-frequency and phase-frequency characteristics is proposed to fit the grid impedance variation. The harmonics current of non-linear load exists in a wide frequency range, normal resonant controller will cause the system unstable due to the negative −180° cross of phase at high-frequency range, a digital phase-lead resonant controller (PL-RC) is proposed to extend the bandwidth of the harmonics current control, then the quantities of the PL-RCs used to suppress harmonics can be increased considerably compared with normal resonant controller. Experimental results are presented to verify the effectiveness of the robust parameters design method and the proposed PL-RC.

References

    1. 1)
      • 25. Yi, H., Zhuo, F., Zhang, Y.J., et al: ‘A source-current-detected shunt active power filter control scheme based on vector resonant controller’, IEEE Trans. Ind. Appl., 2014, 50, (3), pp. 19534473.
    2. 2)
      • 18. Xin, Z., Wang, X.F., Loh, P.H., et al: ‘Grid-current-feedback control for LCL-filtered grid converters with enhanced stability’, IEEE Trans. Ind. Electron., 2017, 32, (4), pp. 32163228.
    3. 3)
      • 23. Yang, L., Yang, J.Q.: ‘A robust dual-loop current control method with a delay-compensation control link for LCL-type shunt active power filters’, IEEE Trans. Power Electron., 2019, 34, (7), pp. 61836199.
    4. 4)
      • 7. Wang, X.H., Ruan, X.B., Liu, S.W., et al: ‘Full feedforward of grid voltage for grid-connected inverter with LCL filter to suppress current distortion due to grid voltage harmonics’, IEEE Trans. Power Electron., 2101, 25, (12), pp. 31193127.
    5. 5)
      • 14. Pena-Alzola, R., Liserre, M., Blaabjerg, F.: ‘Analysis of the passive damping losses in LCL-filter based grid converters’, IEEE Trans. Power Electron., 2013, 28, (6), pp. 26422646.
    6. 6)
      • 20. Yao, W.L., Yang, Y.H., Zhang, X.B., et al: ‘Design and analysis of robust active damping for LCL filters using digital notch filters’, IEEE Trans. Power Electron., 2017, 32, (3), pp. 23602375.
    7. 7)
      • 12. Parker, S.G., McGrath, B.P., Holmes, D.G.: ‘Regions of active damping control for LCL filters’, IEEE Trans. Ind. Appl., 2014, 50, (1), pp. 424432.
    8. 8)
      • 6. Shen, G.Q., Zhu, X.C., Zhang, J., et al: ‘A new feedback method for PR current control of LCL-filter-based grid-connected inverter’, IEEE Trans. Ind. Electron., 2010, 57, (6), pp. 20332041.
    9. 9)
      • 2. Wang, Y., Xu, J.L., Feng, L., et al: ‘A novel hybrid modular three-level shunt active power filter’, IEEE Trans. Power Electron., 2018, 33, (9), pp. 75917600.
    10. 10)
      • 11. Xu, J., Xie, S., Tang, T.: ‘Evaluations of current control in weak grid case for grid-connected LCL-filtered inverter’, IET Power Electron., 2013, 6, (2), pp. 227234.
    11. 11)
      • 5. Fabricio, D.L.L., Junior, S.C.S., Jacobina, C.B., et al: ‘Analysis of main topologies of shunt active powerfilters applied to four-wire systems’, IEEE Trans. Power Electron., 2018, 33, (3), pp. 21002112.
    12. 12)
      • 24. Yazdani, D., Bakhshai, A., Jos, G., et al: ‘A real-time three-phase selective harmonic-extraction approach for grid-connected converters’, IEEE Trans. Ind. Electron., 2009, 56, (10), pp. 40974106.
    13. 13)
      • 3. Liu, Q.Y., Li, Y., Luo, L.F., et al: ‘Power quality management of PV power plant with transformer integrated filtering method’, IEEE Trans. Power deliv., 2019, 34, (3), pp. 941949.
    14. 14)
      • 16. Liu, F., Zhou, Y., Duan, S., et al: ‘Parameter design of a two-current-loop controller used in a grid-connected inverter system with LCL filter’, IEEE Trans. Ind. Electron., 2009, 56, (11), pp. 44834491.
    15. 15)
      • 9. Yang, D.S, Ruan, X.B., Wu, H.: ‘Impedance shaping of the grid-connected inverter with LCL filter to improve its adaptability to the weak grid condition’, IEEE Trans. Power Electron., 2014, 29, (11), pp. 57955805.
    16. 16)
      • 22. Briz, F., Garcia, P., Degner, M.W., et al: ‘Dynamic behavior of current controllers for selective harmonic compensation in three-phase active power filters’, IEEE Trans. Ind. Appl., 2013, 49, (3), pp. 14111420.
    17. 17)
      • 28. Asiminoaei, L., Lascu, C., Blaabjerg, F., et al: ‘Performance improvement of shunt active power filter with dual parallel topology’, IEEE Trans. Power Electron., 2007, 22, (1), pp. 247259.
    18. 18)
      • 10. Dang, P., Ellinger, T., Petzoldt, J.: ‘Dynamic interaction analysis of APF systems’, IEEE Trans. Ind. Electron., 2014, 61, (61), pp. 44674473.
    19. 19)
      • 17. He, J., Li, Y.W.: ‘Generalized closed-loop control schemes with embedded virtual impedances for voltage source converters with LC or LCL filters’, IEEE Trans. Power Electron., 2012, 27, (4), pp. 18501861.
    20. 20)
      • 19. Wang, J.G., Yan, J.D., Lin Jiang, L., et al: ‘Delay-dependent stability of single-loop controlled grid-connected inverters with LCL filters’, IEEE Trans. Power Electron., 2016, 31, (1), pp. 743757.
    21. 21)
      • 4. Mu, X.B., Wang, J.H., Wu, W.M., et al: ‘A modified multifrequency passivity-based control for shunt active power filter with model-parameter-adaptive capability’, IEEE Trans. Ind. Electron., 2018, 65, (1), pp. 760769.
    22. 22)
      • 1. Morales, J., Vicuna, L.G.D., Guzman, R., et al: ‘Modeling and sliding mode control for three-phase active power filters using vector operation technique’, IEEE Trans. Ind. Electron., 2018, 65, (9), pp. 68286838.
    23. 23)
      • 27. Cui, G.P., Luo, L.F., Li, Y., et al: ‘Active power filter integrated with distribution transformer based on magnetic potential balance’, IET Gener. Transm. Distrib., 2019, 13, (2), pp. 238247.
    24. 24)
      • 8. Bao, C.L., Ruan, X.B., Wang, X.H., et al: ‘A new feedback method for PR current control of LCL-filter-based grid-connected inverter step-by-step controller design for LCL-type grid-connected inverter with capacitor–current-feedback active-damping’, IEEE Trans. Power Electron., 2014, 29, (3), pp. 12391253.
    25. 25)
      • 13. Wagner, M., Barth, T., Alvarez, R., et al: ‘Discrete-time active damping of LCL-resonance by proportional capacitor current feedback’, IEEE Trans. Ind. Appl., 2014, 50, (6), pp. 39773985.
    26. 26)
      • 15. Dannehl, J., Fuchs, F.W., Hansen, S., et al: ‘Investigation of active damping approaches for PI-based current control of grid-connected pulse width modulation converters with LCL filters’, IEEE Trans. Ind. Electron., 2010, 46, (4), pp. 15091517.
    27. 27)
      • 29. Lu, M.H., Al-Durra, A., Muyeen, S. M., et al: ‘Benchmarking of stability and robustness against grid impedance variation for LCL-filtered grid-interfacing inverters’, IEEE Trans. Ind. Electron., 2018, 33, (10), pp. 90339046.
    28. 28)
      • 26. Trinh, Q.N., Lee, H.H.: ‘An advanced current control strategy for three-phase shunt active power filters’, IEEE Trans. Ind. Electron., 2013, 60, (12), pp. 54005410.
    29. 29)
      • 21. Li, X.Q., Fang, J.Y., Tang, Y., et al: ‘Robust design of LCL filters for single current-loop-controlled grid-connected power converters with unit PCC voltage feedforward’, IEEE J. Emerg. Sel. Top. Power Electron., 2018, 6, (1), pp. 5472.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2019.1381
Loading

Related content

content/journals/10.1049/iet-gtd.2019.1381
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address