access icon free Modelling of large-sized electrolysers for real-time simulation and study of the possibility of frequency support by electrolysers

Hydrogen as an energy carrier holds promising potential for future power systems. An excess of electrical power from renewables can be stored as hydrogen, which can be used at a later moment by industries, households or the transportation system. The stability of the power system could also benefit from electrolysers as these have the potential to participate in frequency and voltage support. Although some electrical models of small electrolysers exist, practical models of large electrolysers have not been described in literature yet. In this publication, a generic electrolyser model is developed in RSCAD, to be used in real-time simulations on the real-time digital simulator. This model has been validated against field measurements of a 1 MW pilot electrolyser installed in the northern part of The Netherlands. To study the impact of electrolysers on power system stability, various simulations have been performed. These simulations show that electrolysers have a positive effect on frequency stability, as electrolysers are able to respond faster to frequency deviations than conventional generators.

Inspec keywords: power system simulation; power generation economics; solar cell arrays; power generation control; power grids; wind turbines; power system stability; wind power plants; fuel cells; hydrogen production

Other keywords: generic electrolyser model; practical models; power system stability; real-time digital simulator; real-time simulations; real-time simulation; 1 MW pilot electrolyser; electrical power; future power systems; power 1.0 MW; electrical models; voltage support; large-sized electrolysers

Subjects: Control of electric power systems; Fuel cells; Wind power plants; Power system control; Fuel cells; Power system management, operation and economics; Solar cells and arrays; Hydrogen storage and technology

References

    1. 1)
      • 18. der Merwe, V., Petrus, J.H.: ‘Characterisation of a proton exchange membrane electrolyser using electrochemical impedance spectroscopy’. PhD thesis, North-West University, 2012.
    2. 2)
      • 20. Guilbert, D., Maria Collura, S., Scipioni, A.: ‘DC/DC converter topologies for electrolyzers: state-of-the-art and remaining key issues’, Int. J. Hydrog. Energy, 2017, 42, (38), pp. 2396623985.
    3. 3)
      • 16. Martinson, C., Van Schoor, G., Uren, K., et al: ‘Equivalent electrical circuit modelling of a proton exchange membrane electrolyser based on current interruption’. IEEE Int. Conf. Industrial Technology (ICIT), Cape Town, South Africa, February 2013.
    4. 4)
      • 14. Lebbal, M., Lecoeuche, S.: ‘Identification and monitoring of a PEM electrolyser based on dynamical modelling’, Int. J. Hydrog. Energy, 2009, 34, p. 5992.
    5. 5)
      • 6. Kiaee, M., Cruden, A., Infield, D., et al: ‘Utilisation of alkaline electrolysers to improve power system frequency stability with a high penetration of wind power’, IET Renew. Power Gener., 2014, 8, (5), pp. 529536.
    6. 6)
      • 26. da Costa Lopes, F., and Watanabe, E.H.: ‘Experimental and theoretical development of a PEM electrolyzer model applied to energy storage systems’. Proc. Power Electronics Conf., (COBEP'09), Brazil, 2009, pp. 775782.
    7. 7)
      • 8. Smolinka, T., Ojong, E.T., Lickert, T.: ‘Fundamentals of PEM water electrolysis’, in Bessabarov, D., Wang, H., Li, H., et al (Eds.): ‘PEM electrolysis for hydrogen production: principles and applications’ (CRC Press, Boca Raton, FL, USA, 2017), pp. 1133.
    8. 8)
      • 25. Ayivor, P., Rueda Torres, J.L., van der Meijden, M.A.M.M.: ‘Modelling of large size electrolyser for electrical grid stability studies – a hierarchical control’. Proc. 17th Wind Integration Workshop, Stockholm, Sweden, October 2018.
    9. 9)
      • 21. García-Valverde, R., Espinosa, N., Urbina, A.: ‘Simple PEM water electrolyser model and experimental validation’, Int. J. Hydrog. Energy, 2012, 37, p. 1927.
    10. 10)
      • 9. Harvey, R., Abouatallah, R., Cargnelli, J.: ‘Large-scale water electrolysis for power-to-gas’, in Bessabarov, D., Wang, H., Li, H., et al (Eds.): ‘PEM electrolysis for hydrogen production: principles and applications’ (CRC Press, Boca Raton, FL, USA, 2017), pp. 303313.
    11. 11)
      • 17. Atlam, O., Kolhe, M.: ‘Equivalent electrical model for a proton exchange membrane (PEM) electrolyser’, Energy Convers. Manage., 2011, 52, p. 2952.
    12. 12)
      • 22. Chiesa, N., Korpås, M., Kongstein, O., et al: ‘Dynamic control of an electrolyser for voltage quality enhancement’. Proc. Int. Conf. Power System Transients (IPST2011), London, UK, 2011.
    13. 13)
      • 27. Mohanpurkar, M., Luo, Y., Terlip, D., et al: ‘Electrolyzers enhancing flexibility in electric grids’, Energies, 2017, 10, p. 1836.
    14. 14)
      • 19. Guida, V., Guilbert, D., Douine, B.: ‘Literature survey of interleaved DC–DC step-down converters for proton exchange membrane electrolyzer applications’, Trans. Environ. Electr. Eng., 2019, 3, (1), pp. 111.
    15. 15)
      • 15. Van der Merwe, J., Uren, K., Bessarabov, D.: ‘A study of the loss characteristics of a single cell PEM electrolyser for pure hydrogen production’. IEEE Int. Conf. Industrial Technology (ICIT), Cape Town, South Africa, February 2013.
    16. 16)
      • 1. TSO2020: electric ‘transmission and storage options’ along TEN-E and TEN-T corridors for 2020’. Available at http://tso2020.eu/, accessed 31 July 2019.
    17. 17)
      • 13. Agbli, K., Péra, M., Hissel, D., et al: ‘Multiphysics simulation of a PEM electrolyser: energetic macroscopic representation approach’, Int. J. Hydrog. Energy, 2011, 36, p. 1382.
    18. 18)
      • 24. Ayivor, P., Torres, J., van der Meijden, M.A.M.M., et al: ‘Modelling of large size electrolyzer for electrical grid stability studies in real-time digital simulation’. Proc. Energynautics Third Int. Hybrid Power Systems Workshop, Tenerife, Spain, May 2018.
    19. 19)
      • 3. Clegg, S., Mancarella, P.: ‘Integrated modelling and assessment of the operational impact of power-to-gas (P2G) on electrical and gas transmission networks’, IEEE Trans. Sustain. Energy, 2015, 6, (4), pp. 12341244.
    20. 20)
      • 4. Xu, H., Kockar, I., Schnittger, S., et al: ‘Influences of a hydrogen electrolyser demand on distribution network under different operational constraints and electricity pricing scenarios’. CIRED Workshop, Helsinki, Finland, June 2016.
    21. 21)
      • 12. Abdin, Z., Webb, C., Gray, E.M.: ‘Modelling and simulation of a proton exchange membrane (PEM) electrolyser cell’, Int. J. Hydrog. Energy, 2015, 40, p. 13243.
    22. 22)
      • 23. Ayivor, P.K.S.: ‘Feasibility of demand-side response from electrolysers to support power system stability’. MSc thesis, Delft University of Technology, Delft, The Netherlands, Available at repository.tudelft.nl, accessed 19 March, 2020.
    23. 23)
      • 2. TSO2020 Consortium: ‘TSO2020 grant agreement’ (TSO2020 Consortium, Brussels, Belgium, 2014).
    24. 24)
      • 10. Schmidt, O., Gambhir, A., Staffell, I., et al: ‘Future cost and performance of water electrolysis: an expert elicitation study’, Int. J. Hydrog. Energy, 2017, 42, (52), pp. 3047030492.
    25. 25)
      • 7. Alshehri, F., García Suárez, V., Rueda Torres, J.L., et al: ‘Modelling and evaluation of PEM hydrogen technologies for frequency ancillary services in future multi-energy sustainable power systems’, Heliyon, 2019, 5, (e01396), pp. 124.
    26. 26)
      • 11. Ruuskanen, V., Koponen, J., Huoman, K., et al: ‘PEM water electrolyzer model for a power-hardware-in-loop simulator’, Int. J. Hydrog. Energy, 2017, 42, (16), pp. 1077510784.
    27. 27)
      • 28. Eichmann, J., Harrison, K., Peters, M.: ‘Novel electrolyser applications: providing more than just hydrogen – technical report NREL/TP-5400-61758’ (National Renewable Energy Laboratory, Denver CO, 2014).
    28. 28)
      • 29. TenneT TSO, B.V.: ‘Kwaliteits- en capaciteitsdocument 2017 (KCD2017)’ (TenneT TSO B.V., Arnhem, The Netherlands, 2017). Available at https://www.tennet.eu/fileadmin/user_upload/Company/Publications/Technical_Publications/Dutch/TenneT_KCD2017_Deel_I_web.pdf, accessed 19 March, 2020.
    29. 29)
      • 5. Alrewq, M., Albarbar, A.: ‘Investigation into the characteristics of proton exchange membrane fuel cell-based power system’, IET Sci. Meas. Technol., 2016, 10, (3), pp. 200206.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2019.1364
Loading

Related content

content/journals/10.1049/iet-gtd.2019.1364
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading