access icon free Deep learning architecture for direct probability density prediction of small-scale solar generation

With the increasing penetration of photovoltaic (PV) systems, the problems posed by the inherent intermittency of small-scale PVs are becoming more severe. To address this issue, it is critical to involve the uncertainty of PV generation in the look-ahead periods in a comprehensive framework. To this end, a direct deep learning architecture for probabilistic forecasting of solar generation is proposed in this paper. An end-to-end deep learning architecture as a novel mixture density network (MDN) is designed based on the combination of a convolutional neural network and a gated recurrent unit. Furthermore, a new loss function and training process based on adversarial training is proposed to enhance the accuracy in direct contracting of the probability density function. Then, several deep and shallow networks are implemented, and the results are compared with the proposed architecture. The effectiveness of the proposed MDN in providing complete statistical information is verified through comparison with Monte Carlo dropout, non-parametric kernel density estimation, and the proposed MDN without adversarial training.

Inspec keywords: solar power stations; convolutional neural nets; probability; power engineering computing; photovoltaic power systems; learning (artificial intelligence)

Other keywords: nonparametric kernel density estimation; small-scale solar generation; end-to-end deep learning architecture; direct deep learning architecture; photovoltaic systems; deep networks; direct contracting; direct probability density prediction; MDN; PV generation; probability density function; loss function; look-ahead periods; shallow networks; novel mixture density network; probabilistic forecasting; small-scale PVs; inherent intermittency; convolutional neural network; adversarial training; training process

Subjects: Other topics in statistics; Neural computing techniques; Power engineering computing; Knowledge engineering techniques; Solar power stations and photovoltaic power systems; Other topics in statistics

References

    1. 1)
      • 30. Dolara, A., Leva, S., Manzolini, G.: ‘Comparison of different physical models for PV power output prediction’, Sol. Energy, 2015, 119, pp. 8399.
    2. 2)
      • 25. Bracale, A., Carpinelli, G., Falco, P.D.: ‘A probabilistic competitive ensemble method for short-term photovoltaic power forecasting’, IEEE Trans. Sustain. Energy, 2017, 8, (2), pp. 551560.
    3. 3)
      • 36. Liang, H., Liu, Y., Sheng, G., et al: ‘Fault-cause identification method based on adaptive deep belief network and time–frequency characteristics of travelling wave’, IET Gener. Transm. Distrib., 2019, 13, (5), pp. 724732.
    4. 4)
      • 26. Kakimoto, M., Endoh, Y., Shin, H., et al: ‘Probabilistic solar irradiance forecasting by conditioning joint probability method and its application to electric power trading’, IEEE Trans. Sustain. Energy, 2019, 10, (2), pp. 983993.
    5. 5)
      • 13. Lee, H., Kim, N.-W., Lee, J.-G., et al: ‘Uncertainty-aware forecast interval for hourly PV power output’, IET Renew. Power Gener., 2019, 13, pp. 26562664, in press.
    6. 6)
      • 43. Afrasiabi, S., Afrasiabi, M., Parang, B., et al: ‘Integration of accelerated deep neural network into power transformer differential protection’, IEEE Trans. Ind. Inf., 2019, 16, pp. 865876.
    7. 7)
      • 23. Sanjari, M.J., Gooi, H.B.: ‘Probabilistic forecast of PV power generation based on higher-order Markov chain’, IEEE Trans. Power Syst., 2017, 32, (4), pp. 29422952.
    8. 8)
      • 9. Yan, J., Li, K., Bai, E., et al: ‘Analytical iterative multistep interval forecasts of wind generation based on TLGP’, IEEE Trans. Sustain. Energy, 2019, 10, (2), pp. 625636.
    9. 9)
      • 38. Ospina, J., Newaz, A., Faruque, M.O.: ‘Forecasting of PV plant output using hybrid wavelet-based LSTM-DNN structure model’, IET Renew. Power Gener., 2019, 13, (7), pp. 10871095.
    10. 10)
      • 50. Clevert, D.-A., Unterthiner, T., Hochreiter, S.: ‘Fast and accurate deep network learning by exponential linear units (ELUs)’, arXiv preprint arXiv:1511.07289, 2015.
    11. 11)
      • 49. Maas, A.L., Hannun, A.Y., Ng, A.Y.: ‘Rectifier non-linearities improve neural network acoustic models’. Proc. Int. Conf. Machine Learning, Atlanta, GA, USA, 2013, p. 3.
    12. 12)
      • 46. Murphy, K.: ‘Machine learning, a probabilistic perspective’ (MIT Press, Cambridge, MA, USA, 2012).
    13. 13)
      • 15. Agoua, X.G., Girard, R., Kariniotakis, G.: ‘Probabilistic models for spatio-temporal photovoltaic power forecasting’, IEEE Trans. Sustain. Energy, 2019, 10, (2), pp. 780789.
    14. 14)
      • 39. Afrasiabi, M., Mohammadi, M., Rastegar, M., et al: ‘Probabilistic deep neural network price forecasting based on residential load and wind speed predictions’, IET Renew. Power Gener., 2019, 13, (11), pp. 18401848.
    15. 15)
      • 37. Afrasiabi, M., Afrasiabi, S., Parang, B., et al: ‘Power transformers internal fault diagnosis based on deep convolutional neural networks’, J. Intell. Fuzzy Syst., 2019, 37, (1), pp. 11651179.
    16. 16)
      • 51. Afrasiabi, M., Mohammadi, M., Rastegar, M., et al: ‘Multi-agent microgrid energy management based on deep learning forecaster’, Energy, 2019, 186, p. 115873.
    17. 17)
      • 35. Afrasiabi, S., Afrasiabi, M., Parang, B., et al: ‘Real-time bearing fault diagnosis of induction motors with accelerated deep learning approach’. Ten0th Int. Power Electronics, Drive Systems and Technologies Conf. (PEDSTC), Shiraz, Iran, 2019, pp. 155159.
    18. 18)
      • 56. Lin, Y., Yang, M., Wan, C., et al: ‘A multi-model combination approach for probabilistic wind power forecasting’, IEEE Trans. Sustain. Energy, 2019, 10, pp. 226237.
    19. 19)
      • 8. Chai, S., Xu, Z., Jia, Y.: ‘Conditional density forecast of electricity price based on ensemble ELM and logistic EMOS’, IEEE Trans. Smart Grid, 2019, 10, (3), pp. 30313043.
    20. 20)
      • 34. Parmar, Y., Natarajan, S., Sobha, G.: ‘DeepRange: deep-learning-based object detection and ranging in autonomous driving’, IET Intell. Transp. Syst., 2019, 13, (8), pp. 12561264.
    21. 21)
      • 1. Wu, F., Jiang, Z., Qian, J., et al: ‘Photovoltaic–wind joint power probability model based on multiple temporal and spatial scale’, IET Gener. Transm. Distrib., 2018, 12, (20), pp. 45464550.
    22. 22)
      • 31. Pieri, E., Kyprianou, A., Phinikarides, A., et al: ‘Forecasting degradation rates of different photovoltaic systems using robust principal component analysis and ARIMA’, IET Renew. Power Gener., 2017, 11, (10), pp. 12451252.
    23. 23)
      • 55. ‘Keras: deep learning library for Theano and TensorFlow’. Available at https://keras.io/k.
    24. 24)
      • 4. Zhang, Y., Beaudin, M., Taheri, R., et al: ‘Day-ahead power output forecasting for small-scale solar photovoltaic electricity generators’, IEEE Trans. Smart Grid, 2015, 6, (5), pp. 22532262.
    25. 25)
      • 6. Zang, H., Cheng, L., Ding, T., et al:Hybrid method for short-term photovoltaic power forecasting based on deep convolutional neural network’, IET Gener. Transm. Distrib., 2018, 2, (20), pp. 45574567.
    26. 26)
      • 29. Wahbah, M., El-Fouly, T.H.M., Zahawi, B., et al: ‘Hybrid beta–KDE model for solar irradiance probability density estimation’, IEEE Trans. Sustain. Energy, 2019, p. 1, in press.
    27. 27)
      • 33. Zhang, R., Ma, H., Hua, W., et al: ‘Data-driven photovoltaic generation forecasting based on Bayesian network with spatial-temporal correlation analysis’, IEEE Trans. Ind. Inf., 2019, 16, pp. 16351644.
    28. 28)
      • 21. Wen, Y., AlHakeem, D., Mandal, P., et al: ‘Performance evaluation of probabilistic methods based on bootstrap and quantile regression to quantify PV power point forecast uncertainty’, IEEE Trans. Neural Netw. Learn. Syst., 2019, pp. 111, in press.
    29. 29)
      • 44. Husmeier, D.: ‘Neural networks for conditional probability estimation: forecasting beyond point predictions’ (Springer Science & Business Media, Berlin, Germany, 2012).
    30. 30)
      • 57. Nobre, A.M., Severiano, C.A., Karthik, S., et al: ‘PV power conversion and short-term forecasting in a tropical, densely built environment in Singapore’, Renew. Energy, 2016, 94, pp. 496509.
    31. 31)
      • 22. Li, L., Yuan, Z., Gao, Y.: ‘Maximization of energy absorption for a wave energy converter using the deep machine learning’, Energy, 2018, 165, pp. 340349.
    32. 32)
      • 52. Srivastava, N., Hinton, G., Krizhevsky, A., et al: ‘Dropout: a simple way to prevent neural networks from overfitting’, J. Mach. Learn. Res., 2014, 15, (1), pp. 19291958.
    33. 33)
      • 53. Mohammadi, M., Afrasiabi, M., Afrasiabi, S., et al: ‘Detection and classification of multiple power quality disturbances based on temporal deep learning’. Int. Conf. Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Milan, Italy, 2019, pp. 15.
    34. 34)
      • 41. Chen, K., Chen, K., Wang, Q., et al: ‘Short-term load forecasting with deep residual networks’, IEEE Trans. Smart Grid, 2019, 20, pp. 226237.
    35. 35)
      • 40. Shi, Z., Liang, H., Dinavahi, V.: ‘Direct interval forecast of uncertain wind power based on recurrent neural networks’, IEEE Trans. Sustain. Energy, 2018, 9, (3), pp. 11771187.
    36. 36)
      • 7. Hayes, B.P., Gruber, J.K., Prodanovic, M.: ‘Multi-nodal short-term energy forecasting using smart meter data’, IET Gener. Transm. Distrib., 2018, 12, (12), pp. 29882994.
    37. 37)
      • 42. Afrasiabi, S., Afrasiabi, M., Parang, B., et al: ‘Designing a composite deep learning-based differential protection scheme of power transformers’, Appl. Soft Comput., 2020, 87, p. 105975.
    38. 38)
      • 27. He, Y., Yan, Y., Xu, Q.: ‘Wind and solar power probability density prediction via fuzzy information granulation and support vector quantile regression’, Int. J. Electr. Power Energy Syst., 2019, 113, pp. 515527.
    39. 39)
      • 28. Ye, C., Ding, Y., Wang, P., et al: ‘A data-driven bottom-up approach for spatial and temporal electric load forecasting’, IEEE Trans. Power Syst., 2019, 34, (3), pp. 19661979.
    40. 40)
      • 3. Huang, C., Chen, S., Yang, S., et al: ‘One-day-ahead hourly forecasting for photovoltaic power generation using an intelligent method with weather-based forecasting models’, IET Gener. Transm. Distrib., 2015, 9, (14), pp. 18741882.
    41. 41)
      • 20. Wang, Y., Gan, D., Zhang, N., et al: ‘Feature selection for probabilistic load forecasting via sparse penalized quantile regression’, J. Mod. Power Syst. Clean Energy, 2019, 7, (5), pp. 12001209.
    42. 42)
      • 45. Bishop, C.M.: ‘Mixture density networks’ (Citeseer, 1994).
    43. 43)
      • 11. Voyant, C., Motte, F., Notton, G., et al: ‘Prediction intervals for global solar irradiation forecasting using regression trees methods’, Renew. Energy, 2018, 126, pp. 332340.
    44. 44)
      • 54. London datastore. Available at https://data.london.gov.uk/dataset/photovoltaic-pv-solar-panel-energy-generation-data.
    45. 45)
      • 12. Shaker, H., Manfre, D., Zareipour, H.: ‘Forecasting the aggregated output of a large fleet of small behind-the-meter solar photovoltaic sites’, Renew. Energy, 2020, 147, pp. 18611869.
    46. 46)
      • 14. Liu, Y., Qin, H., Zhang, Z., et al: ‘Ensemble spatiotemporal forecasting of solar irradiation using variational Bayesian convolutional gate recurrent unit network’, Appl. Energy, 2019, 253, p. 113596.
    47. 47)
      • 17. Wan, C., Lin, J., Wang, J., et al: ‘Direct quantile regression for non-parametric probabilistic forecasting of wind power generation’, IEEE Trans. Power Syst., 2017, 32, (4), pp. 27672778.
    48. 48)
      • 2. S. Europe: ‘Global market outlook for solar power 2018–2022’, Solar Power Europe, Brussels, Belgium, 2018.
    49. 49)
      • 18. Golestaneh, F., Pinson, P., Gooi, H.B.: ‘Very short-term non-parametric probabilistic forecasting of renewable energy generation – with application to solar energy’, IEEE Trans. Power Syst., 2016, 31, (5), pp. 38503863.
    50. 50)
      • 32. Chang, G.W., Lu, H.J.: ‘Integrating grey data preprocessor and deep belief network for day-ahead PV power output forecast’, IEEE Trans. Sustain. Energy, 2018, 11, pp. 185194.
    51. 51)
      • 47. Kurakin, A., Goodfellow, I., Bengio, S.: ‘Adversarial machine learning at scale’, arXiv preprint arXiv:1611.01236, 2016.
    52. 52)
      • 5. Tang, X., Dai, Y., Wang, T., et al: ‘Short-term power load forecasting based on multi-layer bidirectional recurrent neural network’, IET Gener. Transm. Distrib., 2019, 13, (17), pp. 38473854.
    53. 53)
      • 16. Alessandrini, S., Delle Monache, L., Sperati, S., et al: ‘An analog ensemble for short-term probabilistic solar power forecast’, Appl. Energy, 2015, 157, pp. 95110.
    54. 54)
      • 19. González Ordiano, J.Á, Gröll, L., Mikut, R., et al: ‘Probabilistic energy forecasting using the nearest neighbors quantile filter and quantile regression’, Int. J. Forecast., 2019, in press.
    55. 55)
      • 48. Kingma, D.P., Ba, J.: ‘Adam: a method for stochastic optimization’, arXiv preprint arXiv:1412.6980, 2014.
    56. 56)
      • 10. Ni, Q., Zhuang, S., Sheng, H., et al: ‘An ensemble prediction intervals approach for short-term PV power forecasting’, Sol. Energy, 2017, 155, pp. 10721083.
    57. 57)
      • 24. Liu, L., Zhao, Y., Chang, D., et al: ‘Prediction of short-term PV power output and uncertainty analysis’, Appl. Energy, 2018, 228, pp. 700711.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2019.1289
Loading

Related content

content/journals/10.1049/iet-gtd.2019.1289
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading