Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Fast identifying redundant security constraints in SCUC in the presence of uncertainties

Security constrained unit commitment (SCUC), with renewable resources integrated into power grid, is one core function in the day-ahead market. However, it confronts with critical challenges as the heavy complicated security constraints are considered. Usually, it is observed that lots of security constraints are redundant, which can be identified and eliminated, so as to reduce the computational complexity. In this study, the authors first lift the uncertain feasible region of SCUC into a high dimensional space. Furthermore, a fast identification method is proposed to relax the original feasible region, which thus can be solved by the classical greedy algorithm. In order to prevent the over-relaxation and find more redundant constraints, an efficient feasible-based bound tightening strategy is utilised to provide a tighter bound. Numerical results on large-scale test systems verify the effectiveness of the proposed method.

References

    1. 1)
      • 10. Lu, B., Shahidehpour, M.: ‘Unit commitment with flexible generating units’, IEEE Trans. Power Syst., 2005, 20, (2), pp. 10221034.
    2. 2)
      • 1. Lotfjou, A., Shahidehpour, M., Fu, Y., et al: ‘Security-constrained unit commitment with AC/DC transmission systems’, IEEE Trans. Power Syst., 2010, 25, (1), pp. 531542.
    3. 3)
      • 20. Ding, T., Yang, Q., Liu, X., et al: ‘Duality-free decomposition based data-driven stochastic security-constrained unit commitment’, IEEE Trans. Sustain. Energy, 2019, 10, (1), pp. 8293.
    4. 4)
      • 16. Ding, T., Lu, R., Qin, B., et al: ‘Reliability based min-max regret stochastic optimization model for capacity market with renewable energy and practice in China’, IEEE Trans. Sustain. Energy, 2019, 10, (4), pp. 20652074.
    5. 5)
      • 44. Fu, Y., Li, Z.: ‘A direct calculation of shift factors under network islanding’, IEEE Trans. Power Syst., 2015, 30, (3), pp. 15501551.
    6. 6)
      • 32. Trivedi, A., Srinivasan, D., Pal, K., et al: ‘Enhanced multiobjective evolutionary algorithm based on decomposition for solving the unit commitment problem’, IEEE Trans. Ind. Inf., 2015, 11, (6), pp. 13461357.
    7. 7)
      • 43. Belotti, P., Cafieri, S., Lee, J., et al: ‘Feasibility-based bounds tightening via fixed points’. Combinatorial Optimization and Applications, Kailua-Kona, HI, USA, December 2010, pp. 6576.
    8. 8)
      • 46. DeVore, R., Temlyakov, V.: ‘Some remarks on greedy algorithms’, Adv. Comput. Math., 1996, 5, (1), pp. 173187.
    9. 9)
      • 39. Lv, J., Ding, T., Bie, Z., et al: ‘A novel linearization variant of reliability costs in the optimal scheduling model’, IEEE Trans. Power Syst., 2017, 32, (5), pp. 41404142.
    10. 10)
      • 48. Matpower Package. Available at http://www.pserc.cornell.edu/matpower/.
    11. 11)
      • 40. Zhai, Q., Guan, X., Cheng, J., et al: ‘Fast identification of inactive security constraints in SCUC problems’, IEEE Trans. Power Syst., 2010, 25, (4), pp. 19461954.
    12. 12)
      • 21. Zou, J., Ahmed, S., Sun, X.: ‘Multistage stochastic unit commitment using stochastic dual dynamic integer programming’, IEEE Trans. Power Syst., 2019, 34, (3), pp. 18141823.
    13. 13)
      • 19. Wu, L., Shahidehpour, M., Li, Z.: ‘Comparison of scenario-based and interval optimization approaches to stochastic SCUC’, IEEE Trans. Power Syst., 2012, 27, (2), pp. 913921.
    14. 14)
      • 18. Khorramdel, H., Aghaei, J., Khorramdel, B., et al: ‘Optimal battery sizing in microgrids using probabilistic unit commitment’, IEEE Trans. Ind. Inf., 2016, 12, (2), pp. 834843.
    15. 15)
      • 11. Fu, Y., Shahidehpour, M., Li, Z.: ‘Security-constrained optimal coordination of generation and transmission maintenance outage scheduling’, IEEE Trans. Power Syst., 2007, 22, (3), pp. 13021313.
    16. 16)
      • 38. Yu, Y., Luh, P.: ‘Transmission contingency-constrained UC with high penetration of renewable via interval optimization’, IEEE Trans. Power Syst., 2017, 32, (2), pp. 14101421.
    17. 17)
      • 28. Zhang, Y., Wang, J., Ding, T., et al: ‘Conditional value at risk-based stochastic unit commitment considering the uncertainty of wind power generation’, IET Gener. Transm. Distrib., 2018, 12, (2), pp. 482489.
    18. 18)
      • 29. Alvarez Lopez, J., Nieva Gomez, R., Guillen Moya, I.:Commitment of combined cycle plants using a dual optimization-dynamic programming approach’, IEEE Trans. Power Syst., 2011, 26, (2), pp. 728737.
    19. 19)
      • 25. Zhao, C., Jiang, R.: ‘Distributionally robust contingency-constrained unit commitment’, IEEE Trans. Power Syst., 2018, 33, (1), pp. 94102.
    20. 20)
      • 7. Bavafa, F., Niknam, T., Abarghooee, R.A., et al: ‘A new bi-objective probabilistic risk-based wind-thermal unit commitment using Heuristic techniques’, IEEE Trans. Ind. Inf., 2017, 13, (3), pp. 115124.
    21. 21)
      • 24. Jiang, R., Wang, J., Guan, Y.: ‘Robust unit commitment with wind power and pumped storage hydro’, IEEE Trans. Power Syst., 2012, 27, (2), pp. 800810.
    22. 22)
      • 3. Xu, Y., Ding, T., Qu, M., et al: ‘Adaptive dynamic programming based gas-power network constrained unit commitment to accommodate renewable energy with combined-cycle units’, IEEE Trans. Sustain. Energy, 2019, 13, p. 1, early access.
    23. 23)
      • 6. Chen, Z., Wu, L., Shahidehpour, M.: ‘Effective load carrying capability evaluation of renewable energy via stochastic long-term hourly based SCUC s’, IEEE Trans. Sustain. Energy, 2015, 6, (1), pp. 188197.
    24. 24)
      • 8. Lei, S., Hou, Y., Wang, X., et al: ‘Unit commitment incorporating spatial distribution control of air pollutant dispersion’, IEEE Trans. Ind. Inf., 2017, 13, (3), pp. 9951005.
    25. 25)
      • 42. Ardakani, A.J., Bouffard, F.: ‘Acceleration of umbrella constraint discovery in generation scheduling problems’, IEEE Trans. Power Syst., 2015, 30, (4), pp. 21002109.
    26. 26)
      • 13. García, P., García, C., Fernández, L., et al: ‘ANFIS-based control of a grid-connected hybrid system integrating renewable energies, hydrogen and batteries’, IEEE Trans. Ind. Inf., 2014, 10, (2), pp. 11071117.
    27. 27)
      • 47. Ding, T., Bo, R., Guo, Q., et al: ‘Identification of inactive constraints for SCED model considering uncertain power injection’, Proc. CSEE, 2014, 34, pp. 60506057.
    28. 28)
      • 31. Swarup, K., Yamashiro, S.: ‘Unit commitment solution methodology using genetic algorithm’, IEEE Trans. Power Syst., 2002, 17, (1), pp. 8791.
    29. 29)
      • 15. Run, L., Ding, T., Qin, B., et al: ‘Multi-stage stochastic programming to joint economic dispatch for energy and reserve with uncertain renewable energy’, IEEE Trans. Sustain. Energy, 2019, early access.
    30. 30)
      • 4. Xu, Q., Hobbs, B.F.: ‘Value of model enhancements: quantifying the benefit of improved transmission planning models’, IET Gener. Transm. Distrib., 2019, 13, (13), pp. 28362845.
    31. 31)
      • 5. Jin, Z., Pan, K., Fan, L., et al: ‘Data-driven look-ahead unit commitment considering forbidden zones and dynamic ramping rates’, IEEE Trans. Ind. Inf., 2019, 15, (6), pp. 32673276.
    32. 32)
      • 2. Hreinsson, K., Scaglione, A., Analui, B.: ‘Continuous time multi-stage stochastic unit commitment with storage’, IEEE Trans. Power Syst., 2019, 34, (6), pp. 44764489.
    33. 33)
      • 41. Ardakani, A.J., Bouffard, F.: ‘Identification of umbrella constraints in DC-based security-constrained optimal power flow’, IEEE Trans. Power Syst., 2013, 28, (4), pp. 39243934.
    34. 34)
      • 12. Wang, Y., Huang, L., Shahidehpour, M., et al: ‘Resilience-constrained hourly unit commitment in electricity grids’, IEEE Trans. Power Syst., 2018, 33, (5), pp. 56045614.
    35. 35)
      • 34. Lyzwa, W., Wierzbowski, M., Olek, B.: ‘MILP formulation for energy mix optimization’, IEEE Trans. Ind. Inf., 2015, 11, (5), pp. 11661178.
    36. 36)
      • 22. Lee, C., Liu, C., Mehrotra, S., et al: ‘Modeling transmission line constraints in two-stage robust unit commitment problem’, IEEE Trans. Power Syst., 2014, 29, (3), pp. 12211231.
    37. 37)
      • 30. Zhai, Q., Guan, X., Cui, J.: ‘Unit commitment with identical units successive subproblem solving method based on Lagrangian relaxation’, IEEE Trans. Power Syst., 2002, 17, (4), pp. 12501257.
    38. 38)
      • 17. Maffei, A., Srinivasan, S., Castillejo, P., et al: ‘A semantic- middleware-supported receding horizon optimal power flow in energy grids’, IEEE Trans. Ind. Inf., 2018, 14, (1), pp. 3546.
    39. 39)
      • 27. Yang, L., Jian, J., Dong, Z., et al: ‘Multi-cuts outer approximation method for unit commitment’, IEEE Trans. Power Syst., 2017, 32, (2), pp. 15871588.
    40. 40)
      • 36. Tan, W., Shaaban, M.: ‘A hybrid stochastic/deterministic unit commitment based on projected disjunctive MILP reformulation’, IEEE Trans. Power Syst., 2016, 31, (6), pp. 52005201.
    41. 41)
      • 45. Martello, S., Toth, P.: ‘Knapsack problems: algorithms and computer implementations’ (John Wiley & Sons, Inc., New York, NY, USA, 1990).
    42. 42)
      • 23. Hu, B., Wu, L.: ‘Robust SCUC considering continuous/discrete uncertainties and quick-start units: a two-stage robust optimization with mixed-integer resource’, IEEE Trans. Power Syst., 2016, 31, (2), pp. 14071419.
    43. 43)
      • 35. Morales, G., Latorre, J.: ‘Tight and compact MILP formulation for thermal unit commitment’, IEEE Trans. Power Syst., 2013, 28, (4), pp. 48974908.
    44. 44)
      • 14. Zeng, Z., Ding, T., Xu, Y., et al: ‘Reliability evaluation for integrated power-gas systems with power-to-gas and gas storages’, IEEE Trans. Power Syst., 2020, 35, pp. 571583, early access.
    45. 45)
      • 37. Meus, J., Poncelet, K., Delarue, E.: ‘Applicability of a clustered unit commitment model in power system modeling’, IEEE Trans. Power Syst., 2018, 33, (2), pp. 21952204.
    46. 46)
      • 33. Dvorkin, Y., Pandžić, H., Ortega-Vazquez, M.A., et al: ‘A hybrid stochastic /interval approach to transmission-constrained unit commitment’, IEEE Trans. Power Syst., 2015, 30, (2), pp. 621631.
    47. 47)
      • 26. Wu, L.: ‘A tighter piecewise linear approximation of quadratic cost curves for unit commitment problems’, IEEE Trans. Power Syst., 2011, 26, (4), pp. 25812583.
    48. 48)
      • 9. Ahmadi, A., Nezhad, A.E., Hredzak, B.: ‘Security-constrained unit commitment in presence of lithium-ion battery storage units using information-gap decision theory’, IEEE Trans. Ind. Inf., 2019, 15, (1), pp. 148157.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2019.1275
Loading

Related content

content/journals/10.1049/iet-gtd.2019.1275
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address