access icon free Tight convex relaxation for TEP problem: a multiparametric disaggregation approach

In recent years, there has been an increasing interest in using AC power flow equations for the transmission expansion planning (TEP) studies. The AC power flow equations are quadratic and hence the TEP problem can be formulated as a mixed-integer quadratically constrained programme. Therefore, the complexity of the TEP problem lies in the non-convexity of AC power flow equations in which the global optimal solution is not guaranteed to be found. This study aims at proposing a tight convex relaxation for the TEP problem. In this context, first, the TEP problem is formulated as a mixed-integer bilinear problem by representing the complex bus voltage in its rectangular coordinates. Second, the multiparametric disaggregation technique (MDT) and piecewise McCormick relaxation are employed to generate a mixed-integer linear relaxation. MDT is based on the discretisation of the domain of one of the variables in every bilinear term. The method presented is much more precise compared with the DC or other linearisation approaches, while the optimal solution is of high quality. The results of the case studies show the tractability and exactness of the proposed model as well as its superiority over the state-of-the-art schemes.

Inspec keywords: convex programming; nonlinear programming; power transmission planning; quadratic programming; integer programming; concave programming; load flow; linear programming

Other keywords: mixed-integer linear relaxation; mixed-integer bilinear problem; tight convex relaxation; AC power flow equations; TEP problem; transmission expansion planning studies

Subjects: Optimisation techniques; Optimisation techniques; Power system planning and layout; Optimisation

References

    1. 1)
      • 27. Akbari, T., Tavakoli Bina, M.: ‘A linearized formulation of AC multi-year transmission expansion planning: A mixed-integer linear programming approach’, Electr. Power Syst. Res., 2014, 114, pp. 93100.
    2. 2)
      • 42. McCormick, G.P.: ‘Computability of global solutions to factorable nonconvex programs: part i-convex underestimating problems’, Math. Program., 1976, 10, pp. 147175.
    3. 3)
      • 12. Dai, C., Wu, L., Zeng, B., et al: ‘System state model based multi-period robust generation, transmission, and demand side resource co-optimisation planning’, IET Gener. Transm. Distrib., 2019, 13, pp. 345354.
    4. 4)
      • 45. Generalized Algebraic Modelling Systems (GAMS), 2016. Available at http://www.gams.com.
    5. 5)
      • 2. Zolfaghari, S.: ‘Generation and transmission expansion planning with high penetration of wind farms considering spatial distribution of wind speed’, Int. J. Electr. Power Energy Syst., 2019, 106, pp. 232241.
    6. 6)
      • 36. Zhao, Y., Hesamzadeh, M.R.: ‘Second-order cone AC optimal power flow: convex relaxations and feasible solutions’, J. Mod. Power Syst. Clean Energy, 2019, 7, pp. 268280.
    7. 7)
      • 26. Das, S., Verma, A., Bijwe, P.: ‘Security constrained AC transmission network expansion planning’, Electr. Power Syst. Res., 2019, 1, pp. 277289.
    8. 8)
      • 32. Taylor, J., Hover, F.: ‘Conic AC transmission system planning’, IEEE Trans. Power Syst., 2013, 28, pp. 25332538.
    9. 9)
      • 39. Ugranli, F., Karatepe, E., Nielsen, A.: ‘MILP approach for bilevel transmission and reactive power planning considering wind curtailment’, IEEE Trans. Power Syst., 2017, 32, pp. 652661.
    10. 10)
      • 41. Castro, P.M.: ‘Normalized multiparametric disaggregation: an efficient relaxation for mixed-integer bilinear problems’, J. Glob. Optim., 2016, 64, pp. 765784.
    11. 11)
      • 46. Castro, P.M..: ‘Tightening piecewise McCormick relaxations for bilinear problems’, Comput. Chem. Eng., 2015, 72, pp. 300311.
    12. 12)
      • 20. Rahmani, M., Rashidinejad, M., Carreno, E.M., et al: ‘Efficient method for AC transmission network expansion planning’, Electr. Power Syst., 2010, 80, (9), pp. 10561064.
    13. 13)
      • 3. Abbasi, S., Abdi, H., Bruno, S., et al: ‘Transmission network expansion planning considering load correlation using unscented transformation’, Int. J. Electr. Power Energy Syst., 2018, 103, pp. 1220.
    14. 14)
      • 11. Baringo, L., Baringo, A.: ‘A stochastic adaptive robust optimization approach for the generation and transmission expansion planning’, IEEE Trans. Power Syst., 2018, 33, pp. 792802.
    15. 15)
      • 21. Asadamongkol, S., Euarporn, B.: ‘Transmission expansion planning with AC model based on generalized benders decomposition’, Int. J. Electr. Power Energy Syst., 2013, 47, pp. 402407.
    16. 16)
      • 6. Gan, W., Ai, X., Fang, J., et al: ‘Security constrained co-planning of transmission expansion and energy storage’, Appl. Energy., 2019, 239, pp. 383394.
    17. 17)
      • 43. Zimmerman, R.D., Murillo-Sánchez, C.E., Thomas, R.J.: ‘MATPOWER: steady-state operations, planning and analysis tools for power systems research and education’, IEEE Trans. Power Syst., 2011, 26, (1), pp. 1219.
    18. 18)
      • 7. Macrae, C., Ernst, A., Ozlen, M.: ‘A benders decomposition approach to transmission expansion planning considering energy storage’, Energy, 2016, 112, pp. 795803.
    19. 19)
      • 13. Shin, J., Kim, J., Kim, S.: ‘Transmission network expansion planning considering risk level assessment and scenario-based risk level improvement’, IET Gener. Transm. Distrib., 2018, 12, pp. 10811088.
    20. 20)
      • 37. Jabr, R.: ‘Optimization of AC transmission system planning’, IEEE Trans. Power Syst., 2013, 28, pp. 27792787.
    21. 21)
      • 24. Alhamrouni, I., Khairuddin, A., Ferdavani, A.K., et al: ‘Transmission expansion planning using AC-based differential evolution algorithm’, IET Gener. Transm. Distrib., 2014, 8, pp. 16371644.
    22. 22)
      • 1. Wu, Z., Liu, Y., Gu, W., et al: ‘Contingency-constrained robust transmission expansion planning under uncertainty’, Int. J. Electr. Power Energy Syst., 2018, 101, pp. 331338.
    23. 23)
      • 18. Mortaz, E., Valenzuela, J.: ‘Evaluating the impact of renewable generation on transmission expansion planning’, Electr. Power Syst. Res., 2019, 169, pp. 3544.
    24. 24)
      • 30. Akbari, T., Tavakoli Bina, M.: ‘Approximated MILP model for AC transmission expansion planning: global solutions versus local solutions’, IET Gener. Transm. Distrib., 2015, 9, pp. 12351244.
    25. 25)
      • 25. Rider, M.J., Garcia, A.V., Romero, R.: ‘Power system transmission network expansion planning using AC model’, IET Gener. Transm. Distrib., 2007, 1, pp. 731742.
    26. 26)
      • 15. Zhang, X., Tomsoovic, K., Dimitrovski, A.: ‘Security constrained multi-stage transmission expansion planning considering a continuously variable series reactor’, IEEE Trans. Power Syst., 2017, 32, pp. 44424450.
    27. 27)
      • 8. Alizadeh-Mousavi, O., Zima-Bočkarjova, M.: ‘Efficient benders cuts for transmission expansion planning’, Electr. Power Syst. Res., 2016, 131, pp. 275284.
    28. 28)
      • 23. Torres, S.P., Castro, C.A.: ‘Expansion planning for smart transmission grids using AC model and shunt compensation’, IET Gener. Transm. Distrib., 2014, 8, pp. 966975.
    29. 29)
      • 29. Arabpour, A., Besmi, M.R., Maghouli, P.: ‘Transmission expansion planning with linearized AC load flow by special ordered set method’. J. Energy Eng., 2018, 144, pp. 141148.
    30. 30)
      • 31. Zhang, H., Heydt, G.T., Vittal, V., et al: ‘An improved network model for transmission expansion planning considering reactive power and network losses’, IEEE Trans. Power Syst., 2013, 28, pp. 952959.
    31. 31)
      • 33. Taylor, J., Hover, F.: ‘Linear relaxations for transmission system planning’, IEEE Trans. Power Syst., 2011, 26, pp. 25332538.
    32. 32)
      • 19. Vilaça Gomes, P., Saraiva, J., Carvalho, L., et al: ‘Impact of decision-making models in transmission expansion planning considering large shares of renewable energy sources’, Electr. Power Syst. Res., 2019, 174, pp. 277289.
    33. 33)
      • 16. Ploussard, Q., Ramos, A., Olmos, A.: ‘A search space reduction method for transmission expansion planning using an iterative refinement of the DC load flow model’, IEEE Trans. Power Syst., 2019, 35, pp. 152162.
    34. 34)
      • 22. Hooshmand, R., Hemmati, R., Parastegari, M.: ‘Combination of AC transmission expansion planning and reactive power planning in the restructured power system’, Energy Convers. Manage., 2012, 55, pp. 2635.
    35. 35)
      • 10. Zhang, X., Conejo, A.: ‘Robust transmission expansion planning representing long- and short-term uncertainty’, IEEE Trans. Power Syst., 2018, 33, pp. 13291338.
    36. 36)
      • 40. Kolodziej, S., Castro, P.M., Grossmann, I.E.: ‘Global optimization of bilinear programs with a multiparametric disaggregation technique’, J. Glob. Optim., 2013, 57, pp. 10391063.
    37. 37)
      • 5. Loureiro, M.V., Schell, K.R., Claro, J., et al: ‘Renewable integration through transmission network expansion planning under uncertainty’, Electr. Power Syst. Res., 2018, 165, pp. 4552.
    38. 38)
      • 14. Naghdizadegan Jahromi, S., Askarzadeh, A., Abdollahi, A.: ‘Modelling probabilistic transmission expansion planning in the presence of plug-in electric vehicles uncertainty by multi-state Markov model’, IET Gener. Transm. Distrib., 2017, 11, pp. 17161725.
    39. 39)
      • 35. Haghighat, H., Zeng, B.: ‘Bilevel conic transmission expansion planning’, IEEE Trans. Power Syst., 2018, 33, pp. 46404642.
    40. 40)
      • 34. Zolfaghari, S., Akbari, T.: ‘Bilevel transmission expansion planning using second-order cone programming considering wind investment’, Energy, 2018, 154, pp. 455465.
    41. 41)
      • 17. Das, S., Verma, A., Bijwe, P.R.: ‘Security constrained AC transmission network expansion planning’, Electr. Power Syst. Res., 2019, 165, pp. 277289.
    42. 42)
      • 28. Camponogara, E., Almeida, K., Junior, R.H.: ‘Piecewise-linear approximations for a non-linear transmission expansion planning problem’, IET Gener. Transm. Distrib., 2016, 10, pp. 15631569.
    43. 43)
      • 44. Akbari, T., Tavakoli Bina, M.: ‘A linearized formulation of AC multi-year transmission expansion planning: A mixed-integer linear programming approach’, Electr. Power Syst. Res., 2014, 114, pp. 93100.
    44. 44)
      • 4. Ruiz, C., Conejo, A.: ‘Robust transmission expansion planning’, Eur. J. Oper. Res., 2015, 242, pp. 390401.
    45. 45)
      • 9. Fitiwi, D., Olmos, L., Rivier, M., et al: ‘Finding a representative network losses model for large-scale transmission expansion planning with renewable energy sources’, Energy, 2016, 101, pp. 343358.
    46. 46)
      • 38. Macedo, L.H., Montes, C.M., Franco, J.F., et al: ‘MILP branch flow model for concurrent AC multistage transmission expansion and reactive power planning with security constraints’, IET Gener. Transm. Distrib., 2016, 10, pp. 30233032.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2019.1270
Loading

Related content

content/journals/10.1049/iet-gtd.2019.1270
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading