access icon free Design of DC-side fault current limiter for MMC-HVDC systems: Safety of the MMC along with frequency stability

A high voltage direct current system based on the modular multi-level converter (MMC-HVDC) is introduced as a suitable device for transmission of bulk powers over long distances. A pole-to-pole DC-side fault is a significant challenge for the MMC-HVDC system. Three main problems are the appearance of voltage spikes following a fast DC fault current break up, frequency instability due to insufficient inertia (networks such as renewable energy-based systems) and destruction of anti-parallel diodes within the MMC due to the high fault current. This study proposes a novel method for limiting DC fault current, improving isolation of the three-phase AC system from the DC-side. The suggested design employs high power resistors as virtual load such that continuity in active power flow will be kept on. Further, this prevents frequency deviation from exceeding the allowable limits. Also, transient over-voltages will be limited which are coming from stray inductances linked with electromagnetic effects of fault current level. Simulations and design practical issues have verified the validity of the proposal by using MATLAB/Simulink.

Inspec keywords: HVDC power transmission; fault currents; power grids; HVDC power convertors

Other keywords: DC-side fault current limiter; fast DC fault current break; high fault current; bulk powers; limiting DC fault current; active power flow; modular multilevel converter; three-phase AC system; pole-to-pole DC-side fault; MMC-HVDC system; frequency instability; high power resistors; renewable energy-based systems; fault current level; frequency stability; high voltage direct current system; voltage spikes; frequency deviation

Subjects: d.c. transmission; Power convertors and power supplies to apparatus; Control of electric power systems

References

    1. 1)
      • 7. Iman-Eini, H., Liserre, M.: ‘DC fault current blocking with the contribution of half-bridge MMC and the hybrid DC breaker’, IEEE Trans. Ind. Electron., 2020, 67, pp. 55035514.
    2. 2)
      • 28. Tzelepis, D., Dyśko, A., Fusiek, G., et al: ‘Single-ended differential protection in MTDC networks using optical sensors’, IEEE Trans. Power Deliv., 2017, 32, pp. 16051615.
    3. 3)
      • 27. Terzija, V.V.: ‘Adaptive underfrequency load shedding based on the magnitude of the disturbance estimation’, IEEE Trans. Power Syst., 2006, 21, pp. 12601266.
    4. 4)
      • 25. Wu, B., Narimani, M.: ‘High-power converters and AC drives’ (John Wiley & Sons, New Jersey, USA., 2017), vol. 59.
    5. 5)
      • 9. Stumpe, M., Tünnerhoff, P., Dave, J., et al: ‘DC fault protection for modular multi-level converter-based HVDC multi-terminal systems with solid state circuit breakers’, IET Gener. Transm. Distrib., 2018, 12, pp. 30133020.
    6. 6)
      • 8. Mokhberdoran, A., Carvalho, A., Leite, H., et al: ‘A review on HVDC circuit breakers’. 3rd Renewable Power Generation Conf. (RPG 2014), Naples, Italy, 2014.
    7. 7)
      • 1. Tahata, K., El Oukaili, S., Kamei, K., et al: ‘HVDC circuit breakers for HVDC grid applications’. 11th IET Int. Conf. on AC and DC Power Transmission, Birmingham, UK., 2015.
    8. 8)
      • 4. Li, X., Song, Q., Liu, W., et al: ‘Protection of nonpermanent faults on DC overhead lines in MMC-based HVDC systems’, IEEE Trans. Power Deliv., 2013, 28, pp. 483490.
    9. 9)
      • 26. Glover, J.D., Sarma, M.S., Overbye, T.: ‘Power system analysis & design, SI version’ (Cengage Learning, USA., 2012).
    10. 10)
      • 11. Zhang, Z., Xu, Z., Xue, Y.: ‘Study of overvoltage protection and insulation coordination for MMC based HVDC’, Power Syst. Prot. Control, 2013, 41, pp. 5864.
    11. 11)
      • 15. Yang, X., Xue, Y., Chen, B., et al: ‘Novel modular multilevel converter against DC faults for HVDC applications’, CSEE J. Power Energy Syst., 2017, 3, pp. 140149.
    12. 12)
      • 10. Wang, Y., Yuan, Z., Wen, W., et al: ‘Generalised protection strategy for HB-MMC-MTDC systems with RL-FCL under DC faults’, IET Gener. Transm. Distrib., 2017, 12, pp. 12311239.
    13. 13)
      • 12. Sanusi, W., Al Hosani, M., El Moursi, M.S.: ‘A novel DC fault ride-through scheme for MTDC networks connecting large-scale wind parks’, IEEE Trans. Sustain. Energy, 2017, 8, pp. 10861095.
    14. 14)
      • 17. Yao, Y., Zhang, Y., Qu, X., et al: ‘A modular multilevel converter with novel double reverse blocking sub-modules for DC fault current blocking capability’, IEEE Trans. Circuits Syst. II, Express Briefs, 2020, 67, pp. 740744.
    15. 15)
      • 6. Tang, L., Ooi, B.-T.: ‘Locating and isolating DC faults in multi-terminal DC systems’, IEEE Trans. Power Deliv., 2007, 22, pp. 18771884.
    16. 16)
      • 18. Rudrasimha, Y. A., Ghat, M.B., Shukla, A.: ‘A new hybrid submodule for MMC with DC fault ride-through capability’. 2018 IEEE Int. Conf. on Power Electronics, Drives and Energy Systems (PEDES), Chennai, India, 2018, pp. 16.
    17. 17)
      • 2. Debnath, S., Qin, J., Bahrani, B., et al: ‘Operation, control, and applications of the modular multilevel converter: a review’, IEEE Trans. Power Electron., 2015, 30, pp. 3753.
    18. 18)
      • 20. Elserougi, A.A., Massoud, A.M., Ahmed, S.: ‘Arrester-less DC fault current limiter based on pre-charged external capacitors for half-bridge modular multilevel converters’, IET Gener. Transm. Distrib., 2017, 11, pp. 93101.
    19. 19)
      • 24. Cwikowski, O., Barnes, M., Shuttleworth, R., et al: ‘Analysis and simulation of the proactive hybrid circuit breaker’. 2015 IEEE 11th Int. Conf. on Power Electronics and Drive Systems, Sydney, NSW, Australia, 2015, pp. 411.
    20. 20)
      • 22. Shelton, M., Winkelman, P., Mittelstadt, W., et al: ‘Bonneville power administration 1400-MW braking resistor’, IEEE Trans. Power Appar. Syst., 1975, 94, pp. 602611.
    21. 21)
      • 5. Li, P., Ma, J., Zhou, X., et al: ‘A protection scheme for DC-side fault based on a new MMC sub-module topology’, Int. J. Electr. Power Energy Syst., 2020, 114, p. 105406.
    22. 22)
      • 14. Xu, J., Zhao, X., Han, N., et al: ‘A thyristor based DC fault current limiter with inductor inserting-bypassing capability’, IEEE J. Emerging Sel. Topics Power Electron., 2019, 7, pp. 17481757.
    23. 23)
      • 3. Friedrich, K.: ‘Modern HVDC PLUS application of VSC in modular multilevel converter topology’. 2010 IEEE Int. Symp. on Industrial Electronics, Bari, Italy, 2010, pp. 38073810.
    24. 24)
      • 19. Huang, X., Qi, L., Pan, J.: ‘A new protection scheme for MMC-based MVDC distribution systems with complete converter fault current handling capability’, IEEE Trans. Ind. Appl., 2018, 55, pp. 17.
    25. 25)
      • 21. Darebaghi, M.G., Amraee, T.: ‘Dynamic multi-stage under frequency load shedding considering uncertainty of generation loss’, IET Gener. Transm. Distrib., 2016, 11, pp. 32023209.
    26. 26)
      • 13. Steurer, M., Brechna, H., Frohlich, K.: ‘A nitrogen gas cooled, hybrid, high temperature superconducting fault current limiter’, IEEE Trans. Appl. Supercond., 2000, 10, pp. 840844.
    27. 27)
      • 23. Peelo, D., Hein, D., Peretti, F.: ‘Application of a 138 kV 200 MW braking resistor’, Power Eng. J., 1994, 8, pp. 188192.
    28. 28)
      • 16. Hu, X., Zhang, J., Xu, S., et al: ‘Investigation of a new modular multilevel converter with DC fault blocking capability’, IEEE Trans. Ind. Appl., 2018, 55, pp. 552562.
    29. 29)
      • 29. Liu, G., Xu, F., Xu, Z., et al: ‘Assembly HVDC breaker for HVDC grids with modular multilevel converters’, IEEE Trans. Power Electron., 2017, 32, pp. 931941.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2019.1193
Loading

Related content

content/journals/10.1049/iet-gtd.2019.1193
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading