Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Orthogonal method for solving maximum correntropy-based power system state estimation

This study introduces a robust orthogonal implementation for a new class of information theory-based state estimation algorithms that rely on the maximum correntropy criterion (MCC). They are attractive due to their capability to suppress bad data. In practice, applying the MCC concept amounts to solving a matrix equation similar to the weighted least-squares normal equation, with difference that measurement weights change as a function of iteratively adjusted observation window widths. Since widely distinct measurement weights are a source of numerical ill-conditioning, the proposed orthogonal implementation is beneficial to impart numerical robustness to the MCC solution. Furthermore, the row-processing nature of the proposed solver greatly facilitates bad data removal as soon as outliers are identified by the MCC algorithm. Another desirable feature of the orthogonal MCC estimator is that it avoids the need of post-processing stages for bad data treatment. The performance of the proposed scheme is assessed through tests conducted on the IEEE 14-bus, 30-bus, 57-bus and 118-bus test systems. Simulation results indicate that the MCC orthogonal implementation exhibits superior bad data suppression capability as compared with conventional methods. It is also advantageous in terms of computational effort, particularly as the number of simultaneous bad data grows.

References

    1. 1)
      • 2. Handschin, E., Schweppe, F.C., Kohlas, J., et al: ‘Bad data analysis for power system state estimation’, IEEE Trans. Power Appar. Syst., 1975, 94, (2), pp. 329337.
    2. 2)
      • 24. Falcão, D.M., de Assis, S.M.: ‘Linear programming state estimation: error analysis and gross error identification’, IEEE Trans. Power Syst., 1988, 3, (3), pp. 809815.
    3. 3)
      • 10. Pesteh, S., Moayyed, H., Miranda, V.: ‘Favorable properties of interior point method and generalized correntropy in power system state estimation’, Electr. Power Syst. Res., 2020, 178, (106035), pp. 110, doi: 10.1016/j.epsr.2019.106035.
    4. 4)
      • 23. Kotiuga, W.W., Vidyasagar, M.: ‘Bad data rejection properties of weighted least absolute value techniques applied to static state estimation’, IEEE Trans. Power Appar. Syst., 1982, PAS-101, (4), pp. 844853.
    5. 5)
      • 8. Pesteh, S., Moayyed, H., Miranda, V., et al: ‘A new interior point solver with generalized correntropy for multiple gross error suppression in state estimation’, Electr. Power Syst. Res., 2019, 176, (105937), pp. 113, doi: 10.1016/j.epsr.2019.105937.
    6. 6)
      • 11. Parzen, E.: ‘On estimation of a probability density function and mode’, Ann. Math. Stat., 1962, 33, (3), pp. 10651076.
    7. 7)
      • 18. Monticelli, A., Wu, F.F., Yen, M.: ‘Multiple bad data identification for state estimation by combinatorial optimization’, IEEE Trans. Power Deliv., 1986, 1, (3), pp. 361369.
    8. 8)
      • 12. Wu, W., Guo, Y., Zhang, B., et al: ‘Robust state estimation method based on maximum exponential square’, IET Gener. Transm. Distrib., 2011, 5, (11), pp. 11651172.
    9. 9)
      • 13. Ma, W., Qiu, J., Liu, X., et al: ‘Unscented Kalman filter with generalized correntropy loss for robust power system forecasting-aided state estimation’, IEEE Trans. Ind. Inf., 2019, 15, (11), pp. 60916100.
    10. 10)
      • 39. Abur, A., Gomez Exposito, A.: ‘Power system state estimation: theory and implementation’ (Marcel Dekke Press, New York, 2004).
    11. 11)
      • 14. Freitas, V., Simões Costa, A., Miranda, V.: ‘Robust state estimation based on orthogonal methods and maximum correntropy criterion’. 2017 Proc. PowerTech, Manchester, UK, July 2017, pp. 16.
    12. 12)
      • 37. Washington University, ‘Power Systems Test Case Archive’. Available at http://www.ee.washington.edu/research/pstca/, accessed January 2019.
    13. 13)
      • 29. Wei, H., Sasaki, H., Kubokawa, J., et al: ‘An interior point method for power system weighted nonlinear L1 norm static state estimation’, IEEE Trans. Power Syst., 1998, 13, (2), pp. 617623.
    14. 14)
      • 6. Opara, J.K. (2014). ‘Information theoretic state estimation in power systems’. PhD thesis, University of Porto.
    15. 15)
      • 9. Chen, Y., Liu, F., Mei, S., et al: ‘Toward adaptive robust state estimation based on MCC by using the generalized Gaussian density as kernel functions’, Int. J. Electr. Power Energy Syst., 2015, 71, pp. 297304.
    16. 16)
      • 19. Zhao, J., Mili, L.: ‘Vulnerability of the largest normalized residual statistical test to leverage points’, IEEE Trans. Power Syst., 2018, 33, (4), pp. 46434646.
    17. 17)
      • 28. Clements, K.A., Davis, P.W., Frey, K.D.: ‘An interior point algorithm for weighted least absolute value state estimation’. IEEE Power Engineering Society Winter Meeting, New York, USA, February 1991, pp. 18.
    18. 18)
      • 25. Abur, A., Celik, M.K.: ‘A fast algorithm for the weighted least absolute value state estimation (for power systems)’, IEEE Trans. Power Syst., 1991, 6, (1), pp. 18.
    19. 19)
      • 38. Dopazo, J.F., Klitin, O.A.: ‘State calculation of power systems from line flow measurements, part II’, IEEE Trans. Power Appar. Syst., 1972, PAS-91, (1), pp. 145151.
    20. 20)
      • 22. Irving, M.R., Owen, R.C., Sterling, M.J.H.: ‘Power-system state estimation using linear programming’, Proc. IEE, 1978, 125, (9), pp. 879885.
    21. 21)
      • 32. Vempati, N., Silva, C., Alsac, O., et al: ‘Topology estimation’. IEEE PES Power Engineering Society General Meeting, San Francisco, CA, USA, June 2005, vol. 1, pp. 806810.
    22. 22)
      • 17. Simões Costa, A., Quintana, V.H.: ‘An orthogonal row processing algorithm for power system sequential state estimation’, IEEE Trans. Power Appar. Syst., 1981, PAS-100, (8), pp. 37913800.
    23. 23)
      • 27. Gol, M., Abur, A.: ‘LAV based robust state estimation for systems measured by PMUs’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 18081814.
    24. 24)
      • 4. Santamaria, I., Pokharel, P.P., Principe, J.C.: ‘Generalized correlation function: definition, properties, and application to blind equalization’, IEEE Trans. Signal Process., 2006, 54, (6), pp. 21872197.
    25. 25)
      • 7. Miranda, V., Santos, A., Pereira, J.: ‘State estimation based on correntropy: a proof of concept’, IEEE Trans. Power Syst., 2009, 24, (4), pp. 18881889.
    26. 26)
      • 36. Golub, G.H., Van Loan, C.F.: ‘Matrix computations’ (The Johns Hopkins University Press, Baltimore, MD, 2013, 4th edn.).
    27. 27)
      • 20. Asada, E.N., Garcia, A.V., Romero, A.: ‘Identifying multiple and interacting bad data in power system state estimation’. Proc. IEEE Power Engineering Society General Meeting, San Francisco, CA, USA, August 2005, pp. 571577.
    28. 28)
      • 30. Vempati, N., Slutsker, I.W., Tinney, W.F.: ‘Enhancements to Givens rotations for power system state estimation’, IEEE Trans. Power Syst., 1991, 6, (2), pp. 842849.
    29. 29)
      • 15. Pires, R., Simões Costa, A., Mili, L.: ‘Iteratively reweighted least-squares state estimation through Givens rotations’, IEEE Trans. Power Syst., 1999, 14, (4), pp. 14991507.
    30. 30)
      • 21. Monticelli, A.: ‘Power system state estimation: a generalized approach’ (Springer Science & Business Media, Norwell, 1999, 1st edn.).
    31. 31)
      • 16. Holten, L., Gjelsvik, A., Aam, S., et al: ‘Comparison of different methods for state estimation’, IEEE Trans. Power Syst., 1988, 3, (4), pp. 17981806.
    32. 32)
      • 40. Simões Costa, A., Piazza, T., Mandel, A.: ‘Qualitative methods to solve qualitative problems in power system state estimation’, IEEE Trans. Power Syst., 1990, 5, (3), pp. 941949.
    33. 33)
      • 26. Mili, L.: ‘Discussion of the paper: linear programming state estimation: error analysis and gross error identification (Falcão, D.M. and de Assis, S.M.)’, IEEE Trans. Power Syst., 1988, 3, (3), pp. 809815.
    34. 34)
      • 34. Monticelli, A., Garcia, A.: ‘Reliable bad data processing for real-time state estimation’, IEEE Trans. Power Appar. Syst., 1983, PAS-102, (5), pp. 11261139.
    35. 35)
      • 5. Liu, W., Pokharel, P.P., Principe, J.C.: ‘Correntropy: properties and applications in non-Gaussian signal processing’, IEEE Trans. Signal Process., 2007, 55, (11), pp. 52865298.
    36. 36)
      • 31. Alsac, O., Vempati, N., Stott, B., et al: ‘Generalized state estimation’, IEEE Trans. Power Syst., 1998, 13, (3), pp. 10691075.
    37. 37)
      • 33. Gentleman, W.M.: ‘Least squares computations by Givens transformations without square roots’, J. Inst. Math. Appl., 1973, 12, (3), pp. 329336.
    38. 38)
      • 3. Mili, L., Cheniae, M.G., Vichare, N.S., et al: ‘Robust state estimation based on projection statistics [of power systems]’, IEEE Trans. Power Syst., 1996, 11, (2), pp. 11181127.
    39. 39)
      • 35. Monticelli, A., Murari, C.A., Wu, F.F.: ‘A hybrid state estimator: solving normal equations by orthogonal transformations’, IEEE Trans. Power Appar. Syst., 1985, PAS-104, (12), pp. 34603468.
    40. 40)
      • 1. Merrill, H.M., Schweppe, F.C.: ‘Bad data suppression in power system static state estimation’, IEEE Trans. Power Appar. Syst., 1971, PAS-90, (6), pp. 27182725.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2019.1179
Loading

Related content

content/journals/10.1049/iet-gtd.2019.1179
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address