access icon free VSSMLMS-based control of multifunctional PV-DSTATCOM system in the distribution network

The variable step size modified least mean square (VSSMLMS) learning algorithm based multifunctional double-stage grid interactive photovoltaic (PV) system is implemented in this paper which feeds power to the grid and the load, ensures unity power factor operation and compensates reactive power. Along with this, it mitigates high grid neutral current during unbalanced loading condition. This algorithm uses variable step sizes to have a smooth dynamic and steady state performances. The boost converter (booster) is used in the first stage to extract peak power from a PV array using perturb and observe peak power point tracking technique. Next to this, a four leg voltage source converter (VSC) is placed to interlink the solar PV system to the grid and the loads. VSSMLMS-based control technique is used to filter the fundamental component of load current and hence gate pulses are generated for the four-leg VSC. This system is simulated in SIMULINK/MATLAB software under several working conditions and the obtained simulation results are validated on a developed laboratory prototype. The performance of the VSSMLMS-based control technique is compared with that of the traditional LMS-based technique. All results validate the IEEE-519 standard.

Inspec keywords: voltage control; least mean squares methods; maximum power point trackers; power supply quality; power factor; photovoltaic power systems; invertors; power generation control; static VAr compensators; power convertors; power grids

Other keywords: multifunctional double-stage grid interactive photovoltaic system; variable step size; steady state performances; traditional LMS-based technique; PV array; unbalanced loading condition; mean square learning algorithm; boost converter; unity power factor operation; solar PV system; leg voltage source converter; peak power point tracking technique; distribution network; multifunctional PV-DSTATCOM system; VSSMLMS-based control technique; smooth dynamic state performances

Subjects: DC-DC power convertors; Solar power stations and photovoltaic power systems; Power convertors and power supplies to apparatus; Control of electric power systems; Voltage control; Interpolation and function approximation (numerical analysis)

References

    1. 1)
      • 2. Turker, H., Favre-Perrod, P.: ‘Management, optimal sizing and technical-economic analysis of batteries for constant production in photovoltaic systems’. IEEE Int. Conf. on Renewable Energy Research and Applications (ICRERA), Birmingham, 2016, pp. 10551061.
    2. 2)
      • 16. Sun, Y., Li, S., Lin, B., et al: ‘Artificial neural network for control and grid integration of residential solar photovoltaic systems’, IEEE Trans Sustain Energy, 2017, 8, (4), pp. 14841495.
    3. 3)
      • 6. Seyedmahmoudian, M., Soon, T.K., Horan, B., et al: ‘New ARMO-based MPPT technique to minimize tracking time and fluctuation at output of PV systems under rapidly changing shading conditions’, IEEE Trans. Ind. Inf., Early Access, 2019.
    4. 4)
      • 11. Pandove, G., Singh, M.: ‘Robust repetitive control design for 3P4W shunt active power filter’, IEEE Trans. Ind. Inf., 2019, 15, (5), pp. 28102818.
    5. 5)
      • 19. Haykin, S., Widrow, B.: ‘Least-mean-square adaptive filters’ (Wiley-Interscience, Hoboken, NJ, 2003).
    6. 6)
      • 21. IEEE Std. 519-2014 (Revision of IEEE Std. 519-1992): ‘IEEE recommended practice and requirements for harmonic control in electric power systems’, 2014.
    7. 7)
      • 4. Subudhi, B., Pradhan, R.: ‘A new adaptive maximum power point controller for a photovoltaic system’, IEEE Trans. Sustain. Energy, 2019, 10, (4), pp. 16251632.
    8. 8)
      • 8. Jiao, S., Ramachandran Potti, K.R., Rajashekara, K., et al: ‘A novel DROGI-based detection scheme for power quality improvement using four-leg converter under unbalanced loads’, IEEE Trans. Ind. Appl., 2020, 56, (1), pp. 815825.
    9. 9)
      • 10. Hossain, M.J., Rafi, F.H.M., Town, G., et al: ‘Multifunctional three-phase four-leg PV-SVSI with dynamic capacity distribution method’, IEEE Trans. Ind. Inf., 2018, 14, (6), pp. 25072520.
    10. 10)
      • 14. Kumar, S., Jain, C., Singh, B.: ‘Adaptive pseudo-linear control for grid-supportive PV system’, IET Gener. Transm. Distrib., 2019, 13, (9), pp. 16531660.
    11. 11)
      • 25. Zhang, F., Wang, Y., Ai, B.: ‘Variable step-size MLMS algorithm for digital predistortion in wideband OFDM systems’, IEEE Trans. Consum. Electron., 2015, 61, (1), pp. 1015.
    12. 12)
      • 12. Agarwal, R.K., Hussain, I., Singh, B.: ‘Dual-function PV-ECS integrated to 3P4W distribution grid using 3M-PLL control for active power transfer and power quality improvement’, IET Renew. Power Gener., 2018, 12, (8), pp. 920927.
    13. 13)
      • 18. Pahari, O.P., Subudhi, B.: ‘Integral sliding mode-improved adaptive MPPT control scheme for suppressing grid current harmonics for PV system’, IET Renew. Power Gener., 2018, 12, (16), pp. 19041914.
    14. 14)
      • 3. Das, D., Madichetty, S., Singh, B., et al: ‘Luenberger observer based current estimated boost converter for PV maximum power extraction-a current sensorless approach’, IEEE J Photovoltaics, 2019, 9, (1), pp. 278286.
    15. 15)
      • 13. Kumar, S., Singh, B.: ‘Multi-objective single-stage SPV system integrated to 3P4W distribution network using DMSI-based control technique’, IEEE Trans. Ind. Appl., 2018, 54, (3), pp. 26562664.
    16. 16)
      • 23. Ogata, K.: ‘Modern control engineering’ (Prentice-Hall, Upper Saddle River, New Jersey, USA, Englewood Cliffs, NJ, USA, 2002, 4th edn.).
    17. 17)
      • 1. Boxwell, M.: ‘A simple, practical guide to solar energy-designing and installing solar photovoltaic systems’ (Greenstream Publishing Ltd, UK, 2019).
    18. 18)
      • 15. Singh, B., Kumar, S., Jain, C.: ‘Damped-SOGI-based control algorithm for solar PV power generating system’, IEEE Trans. Ind. Appl., 2017, 53, (3), pp. 17801788.
    19. 19)
      • 7. Podder, A. K., Roy, N. K., Pota, H. R.: ‘MPPT methods for solar PV systems: a critical review based on tracking nature’, IET Renew. Power Gener., 2019, 13, (10), pp. 16151632.
    20. 20)
      • 20. Sakai, H.: ‘Recursive least-squares algorithms of modified gram-Schmidt type for parallel weight extraction’, IEEE Trans. Signal Process., 1994, 42, (2), pp. 429433.
    21. 21)
      • 5. Kumar, N., Hussain, I., Singh, B., et al: ‘Peak power detection of PS solar PV panel by using WPSCO’, IET Renew. Power Gener., 2017, 11, (4), pp. 480489.
    22. 22)
      • 24. Pandey, S.K., Kumar, S., Singh, B.: ‘LCO-FLL control for single-phase utility integrated single-stage solar PV system’, IET Renew. Power Gener., 2018, 12, (16), pp. 19411948.
    23. 23)
      • 22. Shaw, P.: ‘Modelling and analysis of an analogue MPPT-based PV battery charging system utilising dc–dc boost converter’, IET Renew. Power Gener., 2019, 13, (11), pp. 19581967.
    24. 24)
      • 9. Singh, B., Chandra, A., Al-Haddad, K.: ‘Power quality: problems and mitigation techniques’ (John Wiley & Sons Ltd, UK, 2015).
    25. 25)
      • 17. Zhu, Y., Fei, J.: ‘Adaptive global fast terminal sliding mode control of grid-connected photovoltaic system using fuzzy neural network approach’, IEEE. Access., 2017, 5, pp. 94769484.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2019.0889
Loading

Related content

content/journals/10.1049/iet-gtd.2019.0889
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading