Review on voltage-violation mitigation techniques of distribution networks with distributed rooftop PV systems

Review on voltage-violation mitigation techniques of distribution networks with distributed rooftop PV systems

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The integration of the various types of distributed generators in low-voltage (LV) distribution networks becomes a great concern, especially the rooftop photovoltaic (PV) systems. The negative impacts of the rooftop PVs on the distribution feeder buses’ voltage include voltage rise and voltage unbalance (VU). Such a voltage-violation condition depends mainly on the PVs ratings and the network unbalance percentage. This study presents a review for different techniques used to mitigate the voltage violation resulting from PVs integration in a typical three-phase four-wire LV distribution network case study. The voltage-violation mitigation techniques studied in this study are enhancement of the feeder, on-load tap changer, demand-side management, active power curtailment, a reactive power control, static transfer switch, energy storage systems and hybrid strategies. The LV distribution network case study was modelled based on constant power model method using MATLAB software environment. The simulation results demonstrate both voltage regulation and alleviating VU capabilities of each technique.


    1. 1)
      • 1. Tan, W.S, Hassan, M.Y, Majid, M.S, et al: ‘Optimal distributed renewable generation planning: a review of different approaches’, Renew. Sustain. Energy Rev., 2013, 18, pp. 626645.
    2. 2)
      • 2. Tang, J., Cai, D., Yuan, C., et al: ‘Optimal configuration of battery energy storage systems using for rooftop residential photovoltaic to improve voltage profile of distributed network’, J. Eng., 2019, 2019, (16), pp. 728732.
    3. 3)
      • 3. Lakshmi, S., Ganguly, S.: ‘Modelling and allocation planning of voltage sourced converters to improve the rooftop PV hosting capacity and energy efficiency of distribution networks’, IET Gener. Transm. Distrib., 2018, 12, (20), pp. 44624471.
    4. 4)
      • 4. Nasri, A., Golshan, M.E.H., Nejad, S.M.S.: ‘Optimal planning of dispatchable and non-dispatchable distributed generation units for minimizing distribution system's energy loss using particle swarm optimization’, Int. Trans. Electr. Energy. Syst., 2014, 24, pp. 504519.
    5. 5)
      • 5. El-Naggar, A., Erlich, I.: ‘Control approach of three-phase grid connected PV inverters for voltage unbalance mitigation in low-voltage distribution grids’, IET Renew. Power Gener., 2016, 10, (10), pp. 15771586.
    6. 6)
      • 6. Haque, M.M., Wolfs, P.: ‘A review of high PV penetrations in LV distribution networks: present status, impacts and mitigation measures’, Renew. Sustain. Energy Rev., 2016, 62, pp. 11951208.
    7. 7)
      • 7. Mahmud, N., Zahedi, A.: ‘Review of control strategies for voltage regulation of the smart distribution network with high penetration of renewable distributed generation’, Renew. Sustain. Energy Rev., 2016, 64, pp. 582595.
    8. 8)
      • 8. Chaudhary, P., Rizwan, M.: ‘Voltage regulation mitigation techniques in distribution system with high PV penetration: a review’, Renew. Sustain. Energy Rev., 2018, 82, (3), pp. 32793287.
    9. 9)
      • 9. Xu, T., Taylor, P.C.: ‘Voltage control techniques for electrical distribution networks including distributed generation’, IFAC Proc. Vol., 2008, 41, (2), pp. 1196711971.
    10. 10)
      • 10. Siewierski, T., Szypowski, M., Wędzik, A.: ‘A review of economic aspects of voltage control in LV smart grids’, Renew. Sustain. Energy Rev., 2018, 88, pp. 3745.
    11. 11)
      • 11. Voltage characteristics of electricity supplied by public distribution systems. Standard EN 50160, 2005.
    12. 12)
      • 12. Energy Networks Association, Planning limits for voltage unbalance in the United Kingdom, The Electricity Council, Engineering recommendation P29, 1990.
    13. 13)
      • 13. Shahnia, F., Majumder, R., Ghosh, A., et al: ‘Voltage imbalance analysis in residential low voltage distribution networks with rooftop PVs’, Electr. Power Syst. Res., 2011, 81, (9), pp. 18051814.
    14. 14)
      • 14. Shahnia, F., Majumder, R., Ghosh, A., et al: ‘Sensitivity analysis of voltage imbalance in distribution networks with rooftop PVs’. IEEE PES Power and Energy Society General Meeting, Providence, RI, USA, 2010, pp. 18.
    15. 15)
      • 15. Chen, T.-H., Yang, W.-C.: ‘Analysis of multi-grounded four-wire distribution systems considering the neutral grounding’, IEEE Trans. Power Deliv., 2001, 16, (4), pp. 710717.
    16. 16)
      • 16. Nijhuis, M., Gibescu, M., Cobben, J.F.G.: ‘Incorporation of on-load tap changer transformers in low-voltage network planning’. 2016 IEEE PES Innovative Smart Grid Technologies Conf. Europe (ISGT-Europe), Ljubljana, 2016, pp. 16.
    17. 17)
      • 17. Navarro-Espinosa, A., Ochoa, L.F.: ‘Increasing the PV hosting capacity of LV networks: OLTC-fitted transformers vs. reinforcements’. IEEE Power & Energy Society (ISGT), Washington, DC, USA, 2015, pp. 15.
    18. 18)
      • 18. Armendariz, M., Babazadeh, D., Brodén, D., et al: ‘Strategies to improve the voltage quality in active low-voltage distribution networks using DSO's assets’, IET Gener. Transm. Distrib., 2017, 11, (1), pp. 7381.
    19. 19)
      • 19. Zecchino, A., Hu, J., Coppo, M., et al: ‘Experimental testing and model validation of a decoupled-phase on-load tap-changer transformer in an active network’, IET Gener. Transm. Distrib., 2016, 10, (15), pp. 38343843.
    20. 20)
      • 20. Faiz, J., Siahkolah, B.: ‘Solid-state tap-changer of transformers: design, control and implementation’, Int. J. Electr. Power Energy Syst., 2011, 33, (2), pp. 210218.
    21. 21)
      • 21. Kulmala, A., Repo, S., Bletterie, B.: ‘Avoiding adverse interactions between transformer tap changer control and local reactive power control of distributed generators’. IEEE PES Innovative Smart Grid Technologies Conf. Europe (ISGT-Europe), Ljubljana, Slovenia, 2016, pp. 16.
    22. 22)
      • 22. Kabiri, R., Holmes, D.G., McGrath, B. P.: ‘Voltage regulation of LV feeders with high penetration of PV distributed generation using electronic tap changing transformers’. Australasian Universities Power Engineering Conf. (AUPEC), Perth, WA, Australia, 2014, pp. 16.
    23. 23)
      • 23. Mawarni, D.E., Ali, M.M.V.M., Nguyen, P.H., et al: ‘A case study of using OLTC to mitigate overvoltage in a rural European low voltage network’. Universities Power Engineering Conf. (UPEC), Stoke on Trent, UK, 2015, pp. 15.
    24. 24)
      • 24. Safitri, N., Shahnia, F., Masoum, M.A.S.: ‘Different techniques for simultaneously increasing the penetration level of rooftop PVs in residential LV networks and improving voltage profile’. Asia-Pacific Power and Energy Engineering Conf. (APPEEC), Perth, Australia, 2014, pp. 15.
    25. 25)
      • 25. Efkarpidis, N., De-Rybel, T., Driesen, J.: ‘Technical assessment of centralized and localized voltage control strategies in low voltage networks’, Sustain. Energy Grids Netw., 2016, 8, (8), pp. 8597.
    26. 26)
      • 26. Gao, C., Redfern, M.A.: ‘Advanced voltage control strategy for on-load tap-changer transformers with distributed generations’. Proc. 46th Int. Universities’ Power Engineering Conf. (UPEC), Soest, Germany, 2011.
    27. 27)
      • 27. Smith, C.A., Potts, S.C., Redfern, M.A.: ‘Optimised and pre-emptive strategies for on- load tap changing transformer control relays’. Proc. Eighth IEE Int. Conf. Developments in Power System Protection, Amsterdam, Netherlands, 2004.
    28. 28)
      • 28. Hasan, E.O., Hatata, A.Y., Badran, E.A., et al: ‘A new strategy-based on ANN for controlling the electronic on-load tap-changer’, Int. Trans. Electr. Energy Syst., 2019, 29, p. 1016.
    29. 29)
      • 29. Salman, S.K., Wan, Z.G.: ‘Fuzzy logic-based AVC relay for voltage control of distribution network with and without distributed/embedded generation’. Proc. IEEE Power Tech Conf., Lausanne, Switzerland, 2007.
    30. 30)
      • 30. Li, K.: ‘State estimation for power distribution system and measurement impacts’, IEEE Trans. Power Syst., 1996, 11, (2), pp. 911916.
    31. 31)
      • 31. Mohsenian-Rad, A-H., Wong, V.W.S., Jatskevich, J., et al: ‘Autonomous demand-side management based on game-theoretic energy consumption scheduling for the future smart grid’, IEEE Trans. Smart Grid, 2010, 1, (3), pp. 320331.
    32. 32)
      • 32. Yao, E., Samadi, P., Wong, V.W.S., et al: ‘Residential demand side management under high penetration of rooftop photovoltaic units’, IEEE Trans. Smart Grid, 2016, 7, (3), pp. 15971608.
    33. 33)
      • 33. Pillai, G.G., Putrus, G.A., Pearsall, N.M.: ‘The potential of demand side management to facilitate PV penetration’. 2013 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), Bangalore, India, 2013, pp. 15.
    34. 34)
      • 34. Widén, J., Wäckelgård, E., Lund, P.D.: ‘Options for improving the load matching capability of distributed photovoltaics: methodology and application to high-latitude data’, Sol. Energy, 2009, 83, (11), pp. 19531966.
    35. 35)
      • 35. Bollen, M., Hassan, F.: ‘Voltage magnitude variations’, in (Eds.): ‘Integration of distributed generation in the power system’ (John Wiley & Sons, Inc., Hoboken, NJ, 2011, 1st edn.), p. 205.
    36. 36)
      • 36. Kontis, E.O., Kryonidis, G.C., Chrysochos, A.I., et al: ‘Effect of load modelling in coordinated active power curtailment of distributed renewable energy sources’. Mediterranean Conf. Power Generation, Transmission, Distribution and Energy Conversion (MedPower 2016), Belgrade, Serbia, 2016, pp. 18.
    37. 37)
      • 37. Tonkoski, R., Lopes, L.A.C., El-Fouly, T.H.M.: ‘Coordinated active power curtailment of grid connected PV inverters for overvoltage prevention’, IEEE Trans. Sustain. Energy, 2011, 2, (2), pp. 139147.
    38. 38)
      • 38. Tonkoski, R., Lopes, L.A.C.: ‘Impact of active power curtailment on overvoltage prevention and energy production of PV inverters connected to low voltage residential feeders’, Renew. Energy, 2011, 36, (12), pp. 35663574.
    39. 39)
      • 39. Yap, W.K., Havas, L., Overend, E., et al: ‘Neural network-based active power curtailment for overvoltage prevention in low voltage feeders’, Expert Syst. Appl., 2014, 41, (4), pp. 10631070.
    40. 40)
      • 40. Ipinnimo, O., Chowdhury, S., Chowdhury, S.P., et al: ‘A review of voltage dip mitigation techniques with distributed generation in electricity networks’, Electr. Power Syst. Res., 2013, 103, pp. 2836.
    41. 41)
      • 41. Jahangiri, P, Aliprantis, D.: ‘Distributed volt/VAr control by PV inverters’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 34293439.
    42. 42)
      • 42. Marti, P., Velasco, M., Fuertes, J.M., et al: ‘Distributed reactive power control methods to avoid voltage rise in grid-connected photovoltaic power generation systems’. IEEE Int. Symp. Industrial Electronics (ISIE), Taipei, Taiwan, 2013, pp. 16.
    43. 43)
      • 43. Watson, J.D., Watson, N.R., Santos-Martin, D., et al: ‘Impact of solar photovoltaics on the low-voltage distribution network in New Zealand’, IET Gener. Transm. Distrib., 2016, 10, (1), pp. 19.
    44. 44)
      • 44. Robbins, B.A., Hadjicostis, C.N., Dominguez-Garcia, A.D.: ‘A two-stage distributed architecture for voltage control in power distribution systems’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 14701482.
    45. 45)
      • 45. Yan, R., Marais, B., Saha, T.K.: ‘Impacts of residential photovoltaic power fluctuation on on-load tap changer operation and a solution using DSTATCOM’, Electr. Power Syst. Res., 2014, 111, pp. 185193.
    46. 46)
      • 46. Shahnia, F., Ghosh, A.: ‘Coupling of neighbouring low voltage residential distribution feeders for voltage profile improvement using power electronics converters’, IET Gener. Transm. Distrib., 2016, 10, (2), pp. 535547.
    47. 47)
      • 47. Al-Mathnani, A.O., Shareef, H., Mohamed, A., et al: ‘Power quality improvement using DVR with two fast vector control’. Power Engineering Optimization Conf. (PEOCO), Shah Alam, Malaysia, 2010, pp. 376381.
    48. 48)
      • 48. Shahnia, F., Ghosh, A., Ledwich, G., et al: ‘Voltage unbalance improvement in low voltage residential feeders with rooftop PVs using custom power devices’, Int. J. Electr. Power Energy Syst., 2014, 55, pp. 362377.
    49. 49)
      • 49. Perera, L.B., Ledwich, G., Ghosh, A.: ‘Multiple distribution static synchronous compensators for distribution feeder voltage support’, IET Gener. Transm. Distrib., 2012, 6, (4), pp. 285293.
    50. 50)
      • 50. Tonkoski, R., Lopes, L.A.C.: ‘Voltage regulation in radial distribution feeders with high penetration of photovoltaic’. IEEE Energy 2030 Conf., Atlanta, GA, USA, 2008, pp. 17.
    51. 51)
      • 51. Gholizad, B.: ‘Improving of STS algorithm to detecting voltage unbalance in low voltage distribution networks’. 36th Annual Conf. IEEE Industrial Electronics Society (IECON), Glendale, AZ, USA, 2010, pp. 30123017.
    52. 52)
      • 52. Shahnia, F., Wolfs, P.J., Ghosh, A.: ‘Voltage unbalance reduction in low voltage feeders by dynamic switching of residential customers among three phases’, IEEE Trans. Smart Grid, 2014, 5, (3), pp. 13181327.
    53. 53)
      • 53. Popoola, O., Jimoh, A., Nicolae, D.: ‘On-line remote and automatic switching of consumers’ connection for optimal performance of a distribution feeder’. AFRICON, Windhoek, South Africa, 2007, pp. 16.
    54. 54)
      • 54. Alam, M.J.E., Muttaqi, K.M., Sutanto, D.: ‘Distributed energy storage for mitigation of voltage-rise impact caused by rooftop solar PV’. IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 2012, pp. 18.
    55. 55)
      • 55. Marra, F., Yang, G., Traeholt, C., et al: ‘A decentralized storage strategy for residential feeders with photovoltaics’, IEEE Trans. Smart Grid, 2014, 5, (2), pp. 974981.
    56. 56)
      • 56. Alam, M.J.E., Muttaqi, K.M., Sutanto, D.: ‘Mitigation of rooftop solar PV impacts and evening peak support by managing available capacity of distributed energy storage systems’, IEEE Trans. Power Syst., 2013, 28, (4), pp. 38743884.
    57. 57)
      • 57. Jayasekara, N., Wolfs, P., Masoum, M.A.S.: ‘An optimal management strategy for distributed storages in distribution networks with high penetrations of PV’, Electr. Power Syst. Res., 2014, 116, pp. 147157.
    58. 58)
      • 58. Deeba, S.R., Sharma, R., Saha, T.K..: ‘Coordinated control of multi-functional battery energy storage system in an unbalanced network’. Australasian Universities Power Engineering Conf. (AUPEC), Perth, WA, Australia, 2014, pp. 16.
    59. 59)
      • 59. Wang, L., Liang, D., Crossland, A., et al: ‘Using a smart grid laboratory to investigate battery energy storage to mitigate the effects of PV in distribution networks’. 22nd Int. Conf. Exhibition on Electricity Distribution (CIRED), Stockholm, Sweden, 2013, pp. 14.
    60. 60)
      • 60. Chaiyatham, T., Ngamroo, I.: ‘Bee colony optimization of battery capacity and placement for mitigation of voltage rise by PV in radial distribution network’. 2012 Tenth Int. Power & Energy Conf. (IPEC), Ho Chi Minh City, Vietnam, 2012, pp. 1318.
    61. 61)
      • 61. Alam, M.J.E., Muttaqi, K.M., Sutanto, D.: ‘Mitigation of rapid voltage variations caused by passing clouds in distribution networks with solar PV using energy storage’. Eighth Int. Conf. Electrical Computer Engineering, Dhaka, Bangladesh, 2014, pp. 305308.
    62. 62)
      • 62. Alam, M.J.E, Muttaqi, K.M., Sutanto, D.: ‘Alleviation of neutral-to-ground potential rise under unbalanced allocation of rooftop PV using distributed energy storage’, IEEE Trans. Sustain. Energy, 2015, 6, (3), pp. 889898.
    63. 63)
      • 63. Nour, A.M.M., Hatata, A.Y., Helal, A.A., et al: ‘Rooftop PV systems with distributed batteries for voltage unbalance mitigation in low voltage radial feeders’, J. Renew. Sustain. Energy, 2018, 10, (10), pp. 055302-1055302-20.
    64. 64)
      • 64. Su, X., Masoum, M.A.S., Wolfs, P.: ‘Comprehensive optimal photovoltaic inverter control strategy in unbalanced three-phase four-wire low voltage distribution networks’, IET Gener. Transm. Distrib., 2014, 8, (11), pp. 18481859.
    65. 65)
      • 65. Darwish, E.M., Hasanien, H.M., Atallah, A., et al: ‘Reactive power control of three-phase low voltage system based on voltage to increase PV penetration levels’, Ain Shams Eng. J., 2017, 9, (4), pp. 17.
    66. 66)
      • 66. Samdi, A., Shayesteh, E., Soder, L.: ‘Optimal coordination of Q(P) characteristics for PV systems in distribution grids for minimizing reactive power consumption’. AORC Technical Meeting, Sweden, 2014, pp. 17.
    67. 67)
      • 67. Samadi, A., Eriksson, R., Soder, L., et al: ‘Coordinated active power-dependent voltage regulation in distribution grids with PV systems’, IEEE Trans. Power Deliv., 2014, 29, (3), pp. 14541464.
    68. 68)
      • 68. Demirok, E., Sera, D., Rodriguez, P., et al: ‘Enhanced local grid voltage support method for high penetration of distributed generators’. 37th Annual Conf. IEEE Industrial Electronics Society (IECON), Melbourne, VIC, Australia, 2011, pp. 24812485.
    69. 69)
      • 69. Marra, F., Fawzy, Y.T., Bülo, T., et al: ‘Energy storage options for voltage support in low-voltage grids with high penetration of photovoltaic’. Third IEEE PES Int. Conf. Exhibition (ISGT Europe), Berlin, Germany, 2012, pp. 17.
    70. 70)
      • 70. Kabir, M.N., Mishra, Y., Ledwich, G., et al: ‘Coordinated control of grid-connected photovoltaic reactive power and battery energy storage systems to improve the voltage profile of a residential distribution feeder’, IEEE Trans. Ind. Inf., 2014, 10, (2), pp. 967977.
    71. 71)
      • 71. Hashemi, S., Ostergaard, J.: ‘Efficient control of energy storage for increasing the PV hosting capacity of LV grids’, IEEE Trans. Smart Grid, 2016, 99, pp. 19.
    72. 72)
      • 72. Chamana, M., Chowdhury, B.H.: ‘Impact of smart inverter control with PV systems on voltage regulators in active distribution networks’. 11th Annual High Capacity Optical Networks and Emerging/Enabling Technologies (Photonics for Energy), Charlotte, NC, USA, 2014, pp. 115119.
    73. 73)
      • 73. Zad, B.B., Lobry, J., Valle, F.: ‘Coordinated control of on load tap changer and D-STATCOM for voltage regulation of radial distribution systems with DG units’. Third Int. Conf. Electric Power Energy Conversion Systems, Istanbul, Turkey, 2013, pp. 15.
    74. 74)
      • 74. Aziz, T., Ketjoy, N.: ‘Enhancing PV penetration in LV networks using reactive power control and on load tap changer with existing transformers’, IEEE Access, 2018, 6, pp. 26832691.
    75. 75)
      • 75. Efkarpidis, N., Wijnhoven, T., Gonzalez, C., et al: ‘Coordinated voltage control scheme for Flemish LV distribution grids utilizing OLTC transformers and D-STATCOM's’. 12th IET Int. Conf. Developments Power System Protection (DPSP), Copenhagen, Denmark, 2014, pp. 16.
    76. 76)
      • 76. Safitri, N., Shahnia, F., Masoum, M.A.S.: ‘Stochastic analysis results for coordination of single-phase rooftop PVs in unbalanced residential feeders’. IEEE PES Asia-Pacific Power and Energy Engineering Conf. (APPEEC), Brisbane, QLD, Australia, 2015, pp. 15.
    77. 77)
      • 77. Liu, X., Aichhorn, A., Liu, L., et al: ‘Coordinated control of distributed energy storage system with tap changer transformers for voltage rise mitigation under high photovoltaic penetration’, IEEE Trans. Smart Grid, 2012, 3, (2), pp. 897906.
    78. 78)
      • 78. Yang, H.T., Chen, Y.T., Liao, J.T., et al: ‘Overvoltage mitigation control strategies for distribution system with high PV penetration’. 2015 18th Int. Conf. Intelligent System Application to Power Systems (ISAP), Porto, Portugal, 2015, pp. 16.
    79. 79)
      • 79. Azzouz, M.A., Farag, H.E., El-Saadany, E.F.: ‘Real-time fuzzy voltage regulation for distribution networks incorporating high penetration of renewable sources’, IEEE Syst. J., 2017, 11, (3), pp. 17021711.
    80. 80)
      • 80. Nour, A.M.M., Hatata, A.Y., Helal, A.A., et al: ‘Distribution network line power loss evaluation with grid connected rooftop photovoltaic systems utilizing over voltage mitigation techniques’. IEEE Int. Conf. Power Energy (PEcon), Kuala Lumpur, Malaysia, 2018, pp. 2328.

Related content

This is a required field
Please enter a valid email address