Impact assessment of virtual synchronous generator on the electromechanical dynamics of type 4 wind turbine generators

Impact assessment of virtual synchronous generator on the electromechanical dynamics of type 4 wind turbine generators

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The de-loaded operation of wind turbine generators (WTGs) with inertial and frequency control considerably affects the dynamics and stability of variable speed wind turbines. In this context, this work proposes a comprehensive assessment of the simultaneous impact of virtual synchronous generator and frequency controllers on the electromechanical dynamics of type 4 WTGs. The proposed power balance formulation and the performed analysis, which are the main contributions of this work, provide insight into the simultaneous impact of the inertial and frequency control on the dynamics of the wind generation unit and system frequency. The assessment has been performed by means of an analytical formulation for the power balance in the WTG, characteristic curves of the wind turbine, and non-linear time-domain simulations of two test systems. The analyses have shown that the speed and torque deviation magnitudes of the wind turbine, as well as the amount of kinetic energy released by the wind turbine, depend on the wind turbine operating point. The study has also shown that the de-loaded operation considerably increases the inertial response capability of WTGs. The integrated inertial and frequency control approach has resulted in well-behaved electromechanical dynamics for the WTG.


    1. 1)
      • 1. Fu, Y., Zhang, X., Hei, Y., et al: ‘Active participation of variable speed wind turbine in inertial and primary frequency regulations’, Electr. Power Syst. Res., 2017, 147, pp. 174184.
    2. 2)
      • 2. Kim, M.-K.: ‘Optimal control and operation strategy for wind turbines contributing to grid primary frequency regulation’, Appl. Sci., 2017, 7, (9), p. 927.
    3. 3)
      • 3. Gholamrezaie, V., Dozein, M.G., Monsef, H., et al: ‘An optimal frequency control method through a dynamic load frequency control (LFC) model incorporating wind farm’, IEEE Syst. J., 2018, 12, (1), pp. 392401.
    4. 4)
      • 4. Li, Y., Xu, Z., Wong, K.P.: ‘Advanced control strategies of PMSG-based wind turbines for system inertia support’, IEEE Trans. Power Syst., 2017, 32, (4), pp. 30273037.
    5. 5)
      • 5. Wang, S., Hu, J., Yuan, X.: ‘Virtual synchronous control for grid-connected DFIG-based wind turbines’, IEEE J. Emerg. Sel. Top. Power Electron., 2015, 3, (4), pp. 932944.
    6. 6)
      • 6. Heidary Yazdi, S.S., Milimonfared, J., Fathi, S.H., et al: ‘Analytical modeling and inertia estimation of VSG-controlled type 4 WTGs: power system frequency response investigation’, Int. J. Electr. Power Energy Syst., 2019, 107, pp. 446461.
    7. 7)
      • 7. Van de Vyver, J., De Kooning, J.D.M., Meersman, B., et al: ‘Droop control as an alternative inertial response strategy for the synthetic inertia on wind turbines’, IEEE Trans. Power Syst., 2016, 31, (2), pp. 11291138.
    8. 8)
      • 8. Bird, L., Lew, D., Milligan, M., et al: ‘Wind and solar energy curtailment: A review of international experience’, Renew. Sustain. Energy Rev., 2016, 65, pp. 577586.
    9. 9)
      • 9. Ahmadyar, A.S., Verbič, G.: ‘Coordinated operation strategy of wind farms for frequency control by exploring wake interaction’, IEEE Trans. Sustain. Energy, 2017, 8, (1), pp. 230238.
    10. 10)
      • 10. Zhong, Q.C., Ma, Z., Ming, W.L., et al: ‘Grid-friendly wind power systems based on the synchronverter technology’, Energy Convers. Manag., 2015, 89, pp. 719726.
    11. 11)
      • 11. Attya, A.B., Dominguez-Garcia, J.L., Anaya-Lara, O.: ‘A review on frequency support provision by wind power plants: current and future challenges’, Renew. Sustain. Energy Rev., 2018, 81, pp. 20712087.
    12. 12)
      • 12. Liu, X., Yang, W., Huang, H., et al: ‘Dynamic rotor speed protection for DFIG based wind turbines with virtual inertia control’. 2018 China Int. Conf. on Electricity Distribution (CICED), Tianjin, People's Republic of China, 2018, pp. 967971.
    13. 13)
      • 13. Tamrakar, U., Shrestha, D., Maharjan, M., et al: ‘Virtual inertia: current trends and future directions’, Appl. Sci., 2017, 7, (7), p. 654.
    14. 14)
      • 14. D'Arco, S., Suul, J.A., Fosso, O.B.: ‘Small-signal modeling and parametric sensitivity of a virtual synchronous machine in islanded operation’, Int. J. Electr. Power Energy Syst., 2015, 72, pp. 315.
    15. 15)
      • 15. Shang, L., Hu, J., Yuan, X., et al: ‘Understanding inertial response of variable-speed wind turbines by defined internal potential vector’, Energies, 2017, 10, (1), pp. 117.
    16. 16)
      • 16. Zhao, H., Yang, Q., Zeng, H.: ‘Multi-loop virtual synchronous generator control of inverter-based DGs under microgrid dynamics’, IET Gener. Transm. Distrib., 2017, 11, (3), pp. 795803.
    17. 17)
      • 17. Mo, O., D'Arco, S., Suul, J.A.: ‘Evaluation of virtual synchronous machines with dynamic or quasi-stationary machine models’, IEEE Trans. Ind. Electron., 2017, 64, (7), pp. 59525962.
    18. 18)
      • 18. Alrajhi Alsiraji, H., El-Shatshat, R.: ‘Comprehensive assessment of virtual synchronous machine based voltage source converter controllers’, IET Gener. Transm. Distrib., 2017, 11, (7), pp. 17621769.
    19. 19)
      • 19. Liu, J., Miura, Y., Ise, T.: ‘Comparison of dynamic characteristics between virtual synchronous generator and droop control in inverter-based distributed generators’, IEEE Trans. Power Electron., 2016, 31, (5), pp. 36003611.
    20. 20)
      • 20. Zheng, T., Chen, L., Guo, Y., et al: ‘Comprehensive control strategy of virtual synchronous generator under unbalanced voltage conditions’, IET Gener. Transm. Distrib., 2018, 12, (7), pp. 16211630.
    21. 21)
      • 21. Zhao, J., Lyu, X., Fu, Y., et al: ‘Coordinated microgrid frequency regulation based on DFIG variable coefficient using virtual inertia and primary frequency control’, IEEE Trans. Energy Convers., 2016, 31, (3), pp. 833845.
    22. 22)
      • 22. Liu, T., Pan, W., Quan, R., et al: ‘A variable droop frequency control strategy for wind farms that considers optimal rotor kinetic energy’, IEEE. Access., 2019, 7, pp. 6863668645.
    23. 23)
      • 23. Bubshait, A., Simões, M.G.: ‘Optimal power reserve of a wind turbine system participating in primary frequency control’, Appl. Sci., 2018, 8, (11), p. 2022.
    24. 24)
      • 24. Xiong, L., Li, P., Wu, F.W., et al: ‘Stability enhancement of power systems with high DFIG-wind turbine penetration via virtual inertia planning’, IEEE Trans. Power Syst., 2019, 34, (2), pp. 13521361.
    25. 25)
      • 25. Gao, B., Xia, C., Chen, N., et al: ‘Virtual synchronous generator based auxiliary damping control design for the power system with renewable generation’, Energies, 2017, 10, (8), p. 1146.
    26. 26)
      • 26. Lukasievicz, T., Oliveira, R., Torrico, C., et al: ‘A control approach and supplementary controllers for a stand-alone system with predominance of wind generation’, Energies, 2018, 11, (2), p. 411.
    27. 27)
      • 27. Quan, R., Pan, W.: ‘A low-order system frequency response model for DFIG distributed wind power generation systems based on small signal analysis’, Energies, 2017, 10, (5), p. 657.
    28. 28)
      • 28. Bordignon, A., de Oliveira, R.V., Lukasievicz, T.: ‘Auxiliary frequency controllers for the black start of stand-alone systems with predominance of wind generation’, Int. Trans. Electr. Energy Syst., 2018, p. 116:e2534.
    29. 29)
      • 29. Mandic, G., Ghotbi, E., Nasiri, A., et al: ‘Mechanical stress reduction in variable speed wind turbine drivetrains’. 2011 IEEE Energy Conversion Congress and Exposition, Phoenix, AZ, USA, 2011, pp. 306312.
    30. 30)
      • 30. Fini, M.H., Golshan, M.E.H.: ‘Determining optimal virtual inertia and frequency control parameters to preserve the frequency stability in islanded microgrids with high penetration of renewables’, Electr. Power Syst. Res., 2018, 154, pp. 1322.
    31. 31)
      • 31. Pogaku, N., Prodanovic, M., Green, T.C.: ‘Modeling, analysis and testing of autonomous operation of an inverter-based microgrid’, IEEE Trans. Power Electron., 2007, 22, (2), pp. 613625.
    32. 32)
      • 32. Anaya-Lara, O., Jenkins, N., Ekanayake, J., et al: ‘Wind energy generation: modelling and control’ (John Wiley & Sons, Chichester, UK, 2011).
    33. 33)
      • 33. Das, D., Aditya, S.K., Kothari, D.P.: ‘Dynamics of diesel and wind turbine generators on an isolated power system’, Int. J. Electr. Power Energy Syst., 1999, 21, (3), pp. 183189.
    34. 34)
      • 34. Kundur, P., Balu, N.J., Lauby, M.G.: ‘Power system stability and control’ (McGraw-Hill, New York, NY, USA, 1994).

Related content

This is a required field
Please enter a valid email address