Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Trends in the protection of inverter-based microgrids

The study reviews the current trends in the protection of inverter-based microgrids. This topic is currently given significant attention, as the inverter-interfaced distributed generation is likely to become dominant in microgrids. Since low fault current is a well-known signature of microgrids, the emphasis is on the complicated fault characteristics in inverter-based microgrids, bearing in mind that low-magnitude fault current and complicated fault responses are inter-related. The fault characteristics are rooted in the inverter controllers that can control inverter voltages and currents during the fault period such that they are completely different from the conventional fault characteristics. Given that these differences could impact conventional protection schemes, challenges to different elements of fault identification, i.e. fault detection, fault polarisation, and faulted phase selection in microgrids are separately addressed in detail. The existing preliminary solutions that define the current trends are discussed and gaps are identified accordingly. The review classifies techniques into three categories: modified classical techniques, heuristic techniques, and differential-based techniques. The explanations are supported by simulation case studies to provide clarification. The purpose is to provide the current status of microgrid protection and assist in developing new effective solutions to protect these grids.

References

    1. 1)
      • 18. Lasseter, R.H.: ‘Microgrids’. IEEE Power Engineering Society Winter Meeting, New York, NY, USA, 2002.
    2. 2)
      • 5. Orji, U., Schantz, C., Leeb, S.B., et al : ‘Adaptive zonal protection for ring microgrids’, IEEE Trans. Smart Grid, 2017, 8, (4), pp. 18431851.
    3. 3)
      • 22. Mueller, J.A., Rasheduzzaman, M., Kimball, J.W.: ‘A model modification process for grid-connected inverters used in islanded microgrids’, IEEE Trans. Energy Convers., 2016, 31, (1), pp. 240250.
    4. 4)
      • 84. Zhang, F., Mu, L.: ‘A fault detection method of microgrids with grid-connected inverter interfaced distributed generators based on the PQ control strategy’, IEEE Trans. Smart Grid, 2019, 10, (5), pp. 48164826.
    5. 5)
      • 15. Hatziargyriou, N., Asano, H., Iravani, R., et al: ‘Microgrids’, IEEE Power Energy Mag., 2007, 5, (4), pp. 7894.
    6. 6)
      • 45. Abdel-Khalik, A.S., Elserougi, A.A., Massoud, A.M., et al: ‘Fault current contribution of medium voltage inverter and doubly-fed induction machine-based flywheel energy storage system’, IEEE Trans. Sustain. Energy, 2013, 4, (1), pp. 5867.
    7. 7)
      • 106. Sharma, S., Pushpak, S., Chinde, V., et al: ‘Sensitivity of transient stability critical clearing time’, IEEE Trans. Power Syst., 2018, 33, (6), pp. 64766486.
    8. 8)
      • 46. Muda, H., Jena, P.: ‘Sequence currents based adaptive protection approach for DNs with distributed energy resources’, IET Gener. Transm. Distrib., 2017, 11, (1), pp. 154165.
    9. 9)
      • 49. Morán, L., Espinoza, J., Burgos, R.: ‘Voltage regulation in mine power distribution systems: problems and solutions’. IEEE Industry Applications Society Annual Meeting, Vancouver, BC, Canada, 2014.
    10. 10)
      • 39. Mirhosseini, M., Pou, J., Agelidis, V.G.: ‘Single- and two-stage inverter-based grid-connected photovoltaic power plants with ride-through capability under grid faults’, IEEE Trans. Sustain. Energy, 2015, 6, (3), pp. 11501159.
    11. 11)
      • 91. Tatcho, P., Li, H., Jiang, Y., et al: ‘A novel hierarchical section protection based on the solid state transformer for the future renewable electric energy delivery and management (FREEDM) system’, IEEE Trans. Smart Grid, 2013, 4, (2), pp. 10961104.
    12. 12)
      • 13. Memon, A.A., Kauhaniemi, K.: ‘A critical review of AC microgrid protection issues and available solutions’, Electr. Power Syst. Res., 2015, 129, pp. 2331.
    13. 13)
      • 73. Teimourzadeh, S., Davarpanah, M., Aminifar, F., et al: ‘An adaptive auto-reclosing scheme to preserve transient stability of microgrids’, IEEE Trans. Smart Grid, 2018, 9, (4), pp. 26382646.
    14. 14)
      • 11. Plet, C.A.: ‘Fault response of inverter-based distributed generation’. Department of Electrical and Electronic Engineering, Imperial College London, 2012.
    15. 15)
      • 87. Chen, Z., Pei, X., Yang, M., et al: ‘A novel protection scheme for inverter-interfaced microgrid (IIM) operated in islanded mode’, IEEE Trans. Power Electron., 2018, 33, (9), pp. 76847697.
    16. 16)
      • 75. Beheshtaein, S., Cuzner, R., Savaghebi, M., et al: ‘Fault location in microgrids: a communication-based high-frequency impedance approach’, IET Gener. Transm. Distrib., 2019, 13, (8), pp. 12291237.
    17. 17)
      • 64. Erlich, I., Neumann, T., Shewarega, F., et al: ‘Wind turbine negative sequence current control and its effect on power system protection’. 2013 IEEE Power and Energy Society General Meeting, Vancouver, BC, Canada, 2013.
    18. 18)
      • 107. Ernst, L.J., Hinman, W., Quam, D., et al: ‘Charge comparison protection of transmission lines-relaying concepts’, IEEE Trans. Power Deliv., 1992, 7, (4), pp. 18341852.
    19. 19)
      • 58. Lu, X., Wang, J., Guerrero, J.M., et al: ‘Virtual-impedance-based fault current limiters for inverter dominated AC microgrids’, IEEE Trans. Smart Grid, 2018, 9, (3), pp. 15991612.
    20. 20)
      • 31. Pan, Y., Ren, W., Ray, S., et al: ‘Impact of inverter interfaced distributed generation on overcurrent protection in distribution systems’. IEEE Power Engineering and Automation Conf., Wuhan, China, 2011.
    21. 21)
      • 9. EDR-4000 Distribution protection relay,Available at http://www.eaton.com.
    22. 22)
      • 72. Trainor, J.J., Hobson, J.E., Muller, H.N.: ‘High-speed single-pole reclosing’, Trans. Am. Inst. Electr. Eng., 1942, 61, (2), pp. 8187.
    23. 23)
      • 102. Schweitzer, E.O., Skendzic, V., Guzmán, A., et al: ‘Five surprises discovered with megahertz sampling and traveling wave data analysis’. 45th Annual Western Protective Relay Conf., Spokane, WA, USA, 2018.
    24. 24)
      • 54. Rocabert, J., Luna, A., Blaabjerg, F., et al: ‘Control of power converters in AC microgrids’, IEEE Trans. Power Electron., 2012, 27, (11), pp. 47344749.
    25. 25)
      • 68. Keller, J., Kroposki, B.D.: ‘Understanding fault characteristics of inverter-based distributed energy resources’ (National Renewable Energy Laboratory, Golden, CO, USA, 2010).
    26. 26)
      • 24. Carrasco, J.M., Franquelo, L.G., Bialasiewicz, J.T., et al: ‘Power-electronic systems for the grid integration of renewable energy sources: a survey’, IEEE Trans. Ind. Electron., 2006, 53, (4), pp. 10021016.
    27. 27)
      • 88. Yuan, C., Lai, K., Illindala, M., et al: ‘Multilayered protection strategy for developing community microgrids in village distribution systems’, IEEE Trans. Power Deliv., 2017, 32, (1), pp. 495503.
    28. 28)
      • 10. Sadeghkhani, I., Golshan, M.E.H., Mehrizi-Sani, A., et al: ‘Transient monitoring function-based fault detection for inverter-interfaced microgrids’, IEEE Trans. Smart Grid, 2018, 9, (3), pp. 20972107.
    29. 29)
      • 21. Rasheduzzaman, M., Mueller, J.A., Kimball, J.W.: ‘Reduced-order small signal model of microgrid systems’, IEEE Trans. Sustain. Energy, 2015, 6, (4), pp. 12921305.
    30. 30)
      • 48. Nikkhajoei, H., Lasseter, R.H.: ‘Microgrid protection’. IEEE Power Engineering Society General Meeting, Tampa, FL, USA, 2007.
    31. 31)
      • 111. Han, B., Li, H., Wang, G., et al: ‘A virtual multi-terminal current differential protection scheme for distribution networks with inverter-interfaced distributed generators’, IEEE Trans. Smart Grid, 2018, 9, (5), pp. 54185431.
    32. 32)
      • 92. Dewadasa, M., Ghosh, A., Ledwich, G., et al: ‘Fault isolation in distributed generation connected distribution networks’, IET Gener. Transm. Distrib., 2011, 5, (10), pp. 10531061.
    33. 33)
      • 82. Song, G., Wang, C., Wang, T., et al: ‘A phase selection method for wind power integration system using phase voltage waveform correlation’, IEEE Trans. Power Deliv., 2017, 32, (2), pp. 740748.
    34. 34)
      • 38. Xiang, D., Turu, J.C., Muratel, S.M., et al: ‘On-site LVRT testing method for full-power converter wind turbines’, IEEE Trans. Sustain. Energy, 2017, 8, (1), pp. 395403.
    35. 35)
      • 77. Hooshyar, A., Iravani, R.: ‘Microgrid protection’, Proc. IEEE, 2017, 105, (7), pp. 13321353.
    36. 36)
      • 97. Yu, J.Q., Hou, Y., Lam, A.Y.S., et al: ‘Intelligent fault detection scheme for microgrids with wavelet-based deep neural networks’, IEEE Trans. Smart Grid, 2019, 10, (2), pp. 16941703.
    37. 37)
      • 40. Meysenc, L., Jylhakallio, M., Barbosa, P.: ‘Power electronics cooling effectiveness versus thermal inertia’, IEEE Trans. Power Electron., 2005, 20, (3), pp. 687693.
    38. 38)
      • 109. Xu, Z.Y., Du, Z.Q., Ran, L., et al: ‘A current differential relay for a 1000-kV UHV transmission line’, IEEE Trans. Power Deliv., 2007, 22, (3), pp. 13921399.
    39. 39)
      • 70. Kasztenny, B., Campbell, B., Mazereeuw, J.: ‘Phase selection for single-pole tripping – weak infeed conditions and cross-country faults’. 27th Annual Western Protective Relay Conf., Spokane, WA, USA, 2000.
    40. 40)
      • 20. Nisar, A., Thomas, M.S.: ‘Comprehensive control for microgrid autonomous operation with demand response’, IEEE Trans. Smart Grid, 2017, 8, (5), pp. 20812089.
    41. 41)
      • 33. Murdock, D.A., Torres, J.E.R., Connors, J.J., et al: ‘Active thermal control of power electronic modules’, IEEE Trans. Ind. Appl., 2006, 42, (2), pp. 552558.
    42. 42)
      • 104. Gao, H., Li, J., Xu, B.: ‘Principle and implementation of current differential protection in distribution networks with high penetration of DGs’, IEEE Trans. Power Deliv., 2017, 32, (1), pp. 565574.
    43. 43)
      • 29. Elmore, W.A.: ‘Generator characteristics and their influence on relaying’. 58th Annual Conf. for Protective Relay Engineers, College Station, TX, USA, 2005.
    44. 44)
      • 14. Telukunta, V., Pradhan, J., Agrawal, A., et al: ‘Protection challenges under bulk penetration of renewable energy resources in power systems: A review’, CSEE J. Power Energy Syst., 2017, 3, (4), pp. 365379.
    45. 45)
      • 7. Baghaee, H.R., Mirsalim, M., Gharehpetian, G.B., et al: ‘MOPSO/FDMT-based Pareto-optimal solution for coordination of overcurrent relays in interconnected networks and multi-DER microgrids’, IET Gener. Transm. Distrib., 2018, 12, (12), pp. 28712886.
    46. 46)
      • 74. Hooshyar, A., El Saadany, E.F., Sanaye Pasand, M.: ‘Fault type classification in microgrids including photovoltaic DGs’, IEEE Trans. Smart Grid, 2016, 7, (5), pp. 22182229.
    47. 47)
      • 37. Troester, E.: ‘New German grid codes for connecting PV systems to the medium voltage power grid’. 2nd Int. Workshop on Concentrating Photovoltaic Power Plants: Optical Design, Production, Grid Connection, 2009, pp. 14.
    48. 48)
      • 101. Li, X., Dyśko, A., Burt, G.M.: ‘Traveling wave-based protection scheme for inverter-dominated microgrid using mathematical morphology’, IEEE Trans. Smart Grid, 2014, 5, (5), pp. 22112218.
    49. 49)
      • 2. Mahat, P., Chen, Z., Bak-Jensen, B., et al: ‘A simple adaptive overcurrent protection of distribution systems with distributed generation’, IEEE Trans. Smart Grid, 2011, 2, (3), pp. 428437.
    50. 50)
      • 69. Shuai, Z., Shen, C., Yin, X., et al: ‘Fault analysis of inverter-interfaced distributed generators with different control schemes’, IEEE Trans. Power Deliv., 2018, 33, (3), pp. 12231235.
    51. 51)
      • 93. Beheshtaein, S., Cuzner, R., Savaghebi, M., et al: ‘Review on microgrids protection’, IET Gener. Transm. Distrib., 2019, 13, (6), pp. 743759.
    52. 52)
      • 90. Huang, W., Nengling, T., Zheng, X., et al: ‘An impedance protection scheme for feeders of active distribution networks’, IEEE Trans. Power Deliv., 2014, 29, (4), pp. 15911602.
    53. 53)
      • 8. Kasztenny, B.: ‘The myth of complexity-configuration mechanisms of modern microprocessor-based relays’. 56th Georgia Tech Protective Relaying Conference, Atlanta, GA, USA, 2002.
    54. 54)
      • 113. Blanke, M., Staroswiecki, M., Wu, N.E.: ‘Concepts and methods in fault-tolerant control’. Proc. 2001 American Control Conf., Arlington, VA, USA, 2001.
    55. 55)
      • 56. Liu, Z., Liu, J., Hou, X., et al: ‘Output impedance modeling and stability prediction of three-phase paralleled inverters with master–slave sharing scheme based on terminal characteristics of individual inverters’, IEEE Trans. Power Electron., 2016, 31, (7), pp. 53065320.
    56. 56)
      • 19. IEEE standard for the testing of microgrid controllers’, IEEE Std 20308-2018, 2018, pp. 142.
    57. 57)
      • 44. Mantooth, H.A., Hefner, A.R.: ‘Short circuit current characteristics analysis and improved current limiting strategy for three-phase three-leg inverter under asymmetric short circuit fault’, IEEE Trans. Power Electron., 2018, 33, (8), pp. 72147228.
    58. 58)
      • 51. Tumilty, R., Brucoli, M., Burt, G.M., et al: ‘Approaches to network protection for inverter dominated electrical distribution systems’. Int. Conf. on Power Electronics, Machines and Drives, Dublin, Ireland, 2006.
    59. 59)
      • 55. Li, Z., Zang, C., Zeng, P., et al: ‘Control of a grid-forming inverter based on sliding-mode and mixed H2/Hinf control’, IEEE Trans. Ind. Electron., 2017, 64, (5), pp. 38623872.
    60. 60)
      • 25. Zhong, Q.C., Weiss, G.: ‘Synchronverters: inverters that mimic synchronous generators’, IEEE Trans. Ind. Electron., 2011, 58, (4), pp. 12591267.
    61. 61)
      • 27. Liu, J., Miura, Y., Ise, T.: ‘Comparison of dynamic characteristics between virtual synchronous generator and droop control in inverter-based distributed generators’, IEEE Trans. Power Electron., 2016, 31, (5), pp. 36003611.
    62. 62)
      • 86. Casagrande, E., Woon, W.L., Zeineldin, H.H., et al: ‘A differential sequence component protection scheme for microgrids with inverter-based distributed generators’, IEEE Trans. Smart Grid, 2014, 5, (1), pp. 2937.
    63. 63)
      • 89. Cintuglu, M.H., Ma, T., Mohammed, O.A.: ‘Protection of autonomous microgrids using agent-based distributed communication’, IEEE Trans. Power Deliv., 2017, 32, (1), pp. 351360.
    64. 64)
      • 60. Hooshyar, A., Iravani, R.: ‘A new directional element for microgrid protection’, IEEE Trans. Smart Grid, 2018, 9, (6), pp. 68626876.
    65. 65)
      • 66. Castilla, M., Miret, J., Sosa, J.L., et al: ‘Grid-fault control scheme for three-phase photovoltaic inverters with adjustable power quality characteristics’, IEEE Trans. Power Electron., 2010, 25, (12), pp. 29302940.
    66. 66)
      • 43. Margossian, H., Deconinck, G., Sachau, J.: ‘Distribution network protection considering grid code requirements for distributed generation’, IET Gener. Transm. Distrib., 2015, 9, (12), pp. 13771381.
    67. 67)
      • 67. Saleh, S., Aljankawey, A., Alsayid, B., et al: ‘Influences of power electronic converters on voltage–current behaviors during faults in DGUs—part II: photovoltaic systems’, IEEE Trans. Ind. Appl., 2015, 51, (4), pp. 28322845.
    68. 68)
      • 79. Oureilidis, K.O., Demoulias, C.S.: ‘A fault clearing method in converter-dominated microgrids with conventional protection means’, IEEE Trans. Power Electron., 2016, 31, (6), pp. 46284640.
    69. 69)
      • 16. Lasseter, R.H.: ‘Smart distribution: coupled microgrids’, Proc. IEEE, 2011, 99, (6), pp. 10741082.
    70. 70)
      • 30. Adkins, B.: ‘Transient theory of synchronous generators connected to power systems’, Proc. IEE II, Power Eng., 1951, 98, (64), pp. 510523.
    71. 71)
      • 94. Casagrande, E., Woon, W.L., Zeineldin, H.H., et al: ‘Data mining approach to fault detection for isolated inverter-based microgrids’, IET Gener. Transm. Distrib., 2013, 7, (7), pp. 745754.
    72. 72)
      • 42. Pan, Y., Voloh, I., Ren, W.: ‘Protection issues and solutions for protecting feeder with distributed generation’. 66th Annual Conf. for Protective Relay Engineers, College Station, TX, USA, 2013.
    73. 73)
      • 99. Perera, N., Rajapakse, A., Buchholzer, T.: ‘Isolation of faults in distribution networks with distributed generators’, IEEE Trans. Power Deliv., 2008, 23, (4), pp. 23472355.
    74. 74)
      • 108. Miller, H., Burger, J., Fischer, N., et al: ‘Modern line current differential protection solutions’. 63rd Annual Conf. for Protective Relay Engineers, College Station, TX, USA, 2010.
    75. 75)
      • 76. Shiles, J., Wong, E., Rao, S., et al: ‘Microgrid protection: an overview of protection strategies in north American microgrid projects’. IEEE Power and Energy Society General Meeting, Chicago, IL, USA, 2017.
    76. 76)
      • 63. Deng, F., Li, X., Zeng, X.: ‘Single-ended travelling wave protection algorithm based on full waveform in the time and frequency domains’, IET Gener. Transm. Distrib., 2018, 12, (15), pp. 36803691.
    77. 77)
      • 3. Laaksonen, H., Ishchenko, D., Oudalov, A.: ‘Adaptive protection and microgrid control design for Hailuoto island’, IEEE Trans. Smart Grid, 2014, 5, (3), pp. 14861493.
    78. 78)
      • 103. Shi, S., Lei, A., He, X., et al: ‘Travelling waves-based fault location scheme for feeders in power distribution network’, J. Eng., 2018, 2018, (15), pp. 13261329.
    79. 79)
      • 62. Calero, F.: ‘Mutual impedance in parallel lines–protective relaying and fault location considerations’. 34th Annual Western Protective Relay Conf., Spokane, WA, USA, 2007.
    80. 80)
      • 47. Che, L., Khodayar, M.E., Shahidehpour, M.: ‘Adaptive protection system for microgrids: protection practices of a functional microgrid system’, IEEE Electrification Mag., 2014, 2, (1), pp. 6680.
    81. 81)
      • 28. Mahamedi, B., Zhu, J.G., Eskandari, M., et al: ‘Protection of inverter-based microgrids from ground faults by an innovative directional element’, IET Gener. Transm. Distrib., 2018, 12, (22), pp. 59185927.
    82. 82)
      • 32. Blaabjerg, F., Teodorescu, R., Liserre, M., et al: ‘Overview of control and grid synchronization for distributed power generation systems’, IEEE Trans. Ind. Electron., 2006, 53, (5), pp. 13981409.
    83. 83)
      • 53. Kelly, A.R.: ‘Allowing for decrement and fault voltage in industrial relaying’, IEEE Trans. Ind. Gen. Appl., 1965, IGA-1, (2), pp. 130139.
    84. 84)
      • 71. Dong, X., Kong, W., Cui, T.: ‘Fault classification and faulted-phase selection based on the initial current traveling wave’, IEEE Trans. Power Deliv., 2009, 24, (2), pp. 552559.
    85. 85)
      • 61. Horak, J.: ‘Directional overcurrent relaying (67) concepts’. 59th Annual Conf. for Protective Relay Engineers, College Station, TX, USA, 2006.
    86. 86)
      • 100. Mishra, M., Rout, P.K.: ‘Detection and classification of micro-grid faults based on HHT and machine learning techniques’, IET Gener. Transm. Distrib., 2018, 12, (2), pp. 388397.
    87. 87)
      • 112. Ustun, T.S., Khan, R.H.: ‘Multiterminal hybrid protection of microgrids over wireless communications network’, IEEE Trans. Smart Grid, 2015, 6, (5), pp. 24932500.
    88. 88)
      • 95. Gururani, A., Mohanty, S.R., Mohanta, J.C.: ‘Microgrid protection using Hilbert–Huang transform based-differential scheme’, IET Gener. Transm. Distrib., 2016, 10, (15), pp. 37073716.
    89. 89)
      • 80. Muda, H., Jena, P.: ‘Superimposed adaptive sequence current based microgrid protection: a new technique’, IEEE Trans. Power Deliv., 2017, 32, (2), pp. 757767.
    90. 90)
      • 83. Azzouz, M.A., Hooshyar, A., El Saadany, E.F.: ‘Resilience enhancement of microgrids with inverter-interfaced DGS by enabling faulty phase selection’, IEEE Trans. Smart Grid, 2018, 9, (6), pp. 65786589.
    91. 91)
      • 98. Kar, S., Samantaray, S.R.: ‘Time–frequency transform-based differential scheme for microgrid protection’, IET Gener. Transm. Distrib., 2014, 8, (2), pp. 310320.
    92. 92)
      • 85. Liu, X., Shahidehpour, M., Li, Z., et al: ‘Protection scheme for loop-based microgrids’, IEEE Trans. Smart Grid, 2017, 8, (3), pp. 13401349.
    93. 93)
      • 4. Zanjani, M.G.M., Mazlumi, K., Kamwa, I.: ‘Application of μPMUs for adaptive protection of overcurrent relays in microgrids’, IET Gener. Transm. Distrib., 2018, 12, (18), pp. 40614068.
    94. 94)
      • 26. Chung, I.Y., Liu, W., Cartes, D.A., et al: ‘Control methods of inverter-interfaced distributed generators in a microgrid system’, IEEE Trans. Ind. Appl., 2010, 46, (3), pp. 10781088.
    95. 95)
      • 35. IEEE application guide for IEEE Std 1547, IEEE standard for interconnecting distributed resources with electric power systems’, 2009, pp. 1217.
    96. 96)
      • 23. Baghaee, H.R., Mirsalim, M., Gharehpetian, G.B.: ‘Real-time verification of new controller to improve small/large-signal stability and fault ride-through capability of multi-DER microgrids’, IET Gener. Transm. Distrib., 2016, 10, (12), pp. 30683084.
    97. 97)
      • 114. Jiang, J., Yu, X.: ‘Fault-tolerant control systems: a comparative study between active and passive approaches’, Annu. Rev. Control, 2012, 36, pp. 6072.
    98. 98)
      • 41. Mantooth, H.A., Hefner, A.R.: ‘Electrothermal simulation of an IGBT PWM inverter’, IEEE Trans. Power Electron., 1997, 12, (3), pp. 474484.
    99. 99)
      • 17. Lasseter, R.H., Paigi, P.: ‘Microgrid: A conceptual solution’. 35th Annual Power Electronics Specialists Conf., Aachen, Germany, 2004.
    100. 100)
      • 65. Das, D., Kothari, D.P., Kalam, A.: ‘Simple and efficient method for load flow solution of radial distribution networks’, Int. J. Electr. Power Energy Syst., 1995, 17, (5), pp. 335346.
    101. 101)
      • 57. Kabiri, R., Holmes, D.G., McGrath, B.P.: ‘Control of active and reactive power ripple to mitigate unbalanced grid voltages’, IEEE Trans. Ind. Appl., 2016, 52, (2), pp. 16601668.
    102. 102)
      • 105. Kamh, M.Z., Iravani, R., EL Fouly, T.H.: ‘Realizing a smart microgrid—pioneer Canadian experience’. IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 2012.
    103. 103)
      • 81. Mirsaeidi, S., Said, D.M., Mustafa, M.W., et al: ‘A protection strategy for micro-grids based on positive-sequence component’, IET Renew. Power Gener., 2015, 9, (6), pp. 600609.
    104. 104)
      • 36. Energinet.: ‘Technical regulation 3.2.5 for wind power plants with a power output greater than 11 kW’. Available at http://www.eaton.comhttps://en.energinet.dk.
    105. 105)
      • 96. Mishra, D.P., Samantaray, S.R., Joos, G.: ‘A combined wavelet and data mining based intelligent protection scheme for microgrid’, IEEE Trans. Smart Grid, 2016, 7, (5), pp. 22952304.
    106. 106)
      • 78. Zarei, S.F., Parniani, M.: ‘A comprehensive digital protection scheme for low-voltage microgrids with inverter-based and conventional distributed generations’, IEEE Trans. Power Deliv., 2017, 32, (1), pp. 441452.
    107. 107)
      • 12. Al-Sheikh, H., Moubayed, N.: ‘Fault detection and diagnosis of renewable energy systems: an overview’. 2012 Int. Conf. on Renewable Energies for Developing Countries, Beirut, Lebanon, 2012.
    108. 108)
      • 6. Han, Y., Hu, X., Zhang, D.: ‘Study of adaptive fault current algorithm for microgrid dominated by inverter based distributed generators’. 2nd Int. Symp. on Power Electronics for Distributed Generation Systems, Hefei, China, 2010.
    109. 109)
      • 110. Chen, S., Tai, N., Fan, C., et al: ‘Sequence-component-based current differential protection for transmission lines connected with IIGs’, IET Gener. Transm. Distrib., 2018, 12, (12), pp. 30863096.
    110. 110)
      • 1. Sortomme, E., Mapes, G., Foster, B., et al: ‘Fault analysis and protection of a microgrid’. 40th North American Power Symp., Calgary, AB, Canada, 2008.
    111. 111)
      • 52. Al Nasseri, H., Redfern, M.A., O'Gorman, R.: ‘Protecting micro-grid systems containing solid-state converter generation’. 2005 Int. Conf. on Future Power Systems, Amsterdam, Netherlands, 2005.
    112. 112)
      • 34. Edpuganti, A., Rathore, A.K.: ‘Optimal low-switching frequency pulsewidth modulation of medium voltage seven-level cascade-5/3H inverter’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 496503.
    113. 113)
      • 59. Glinka, F., Schulte, N., Bertram, R., et al: ‘Solutions for blinding of protection in today's and future German LV grids with high inverter penetration–simulative and experimental analysis’, J. Eng., 2018, 2018, (15), pp. 12561260.
    114. 114)
      • 50. Elkhatib, M.E., Ellis, A.: ‘Communication-assisted impedance-based microgrid protection scheme’. IEEE Power and Energy Society General Meeting, Chicago, IL, USA, 2017.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2019.0808
Loading

Related content

content/journals/10.1049/iet-gtd.2019.0808
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address