access icon free Co-planning of electricity and gas networks considering risk level assessment

This study provides a risk-based gas and electricity expansion planning model to coordinate the expansion of electricity and gas networks in a multi-carrier energy network. Generally, electricity and gas networks have separate owners having no mechanisms to share information. In this study, a distributed algorithm based on alternative direction method of multipliers is developed to preserve the privacy of electricity and gas networks while maintaining a coordination link. Probabilistic outage of components is implemented into the expansion planning model to investigate the interactions between electricity and gas networks and evaluate the risk of contingencies in generating units, transmission lines, and pipelines. Second fuel of gas consuming generating units is modelled to have a holistic approach while studying electricity and gas interactions in the case of contingencies. Moreover, conditional value at risk is used to adjust a balance between risk and investment where each of energy parties can decide on the risk level of their expansion plans. The proposed expansion planning approach is applied to a realistic case study to evaluate its performance.

Inspec keywords: power transmission planning; investment; power generation economics; power generation planning; natural gas technology

Other keywords: electricity expansion planning model; gas consuming generating units; multicarrier energy network; risk-based gas; gas interactions; gas networks considering risk level assessment

Subjects: Power system planning and layout; Power system management, operation and economics; Optimisation techniques

References

    1. 1)
      • 21. Nunes, J.B., Mahmoudi, N., Saha, T.K., et al: ‘Multi-stage co-planning framework for electricity and natural gas under high renewable energy penetration’, IET Gener. Transm. Distrib., 2018, 12, (19), pp. 42844291.
    2. 2)
      • 23. He, Y., Yan, M., Shahidehpour, M., et al: ‘Decentralized optimization of multi-area electricity-natural gas flows based on cone reformulation’, IEEE Trans. Power Syst., 2018, 33, (4), pp. 45314542.
    3. 3)
      • 11. Shao, C., Shahidehpour, M., Wang, X., et al: ‘Integrated planning of electricity and natural gas transportation systems for enhancing the power grid resilience’, IEEE Trans. Power Syst., 2017, 32, (6), pp. 44184429.
    4. 4)
      • 13. Bent, R., Blumsack, S., Van Hentenryck, P.R., et al: ‘Joint electricity and natural gas transmission planning with endogenous market feedbacks’, IEEE Trans. Power Syst., 2018, 33, (6), pp. 63976409.
    5. 5)
      • 18. Odetayo, B., MacCormack, J., Rosehart, W.D., et al: ‘A sequential planning approach for distributed generation and natural gas networks’, Energy, 2017, 127, pp. 428437.
    6. 6)
      • 20. Khaligh, V., Oloomi Buygi, M., Anvari-Moghaddam, A., et al: ‘A multi-attribute expansion planning model for integrated gas–electricity system’, Energies, 2018, 11, p. 2573.
    7. 7)
      • 28. Zhang, Y., Hu, Y., Ma, J., et al: ‘A mixed-integer linear programming approach to security-constrained co-optimization expansion planning of natural gas and electricity transmission systems’, IEEE Trans. Power Syst., 2018, 33, (6), pp. 63686378.
    8. 8)
      • 42. Boyd, S.: ‘Alternating direction method of multipliers’. Talk at NIPS Workshop on Optimization and Machine Learning, Granada, Spain, 2011.
    9. 9)
      • 8. Qiu, J., Dong, Z.Y., Zhao, J.H., et al: ‘Multi-stage flexible expansion co-planning under uncertainties in a combined electricity and gas market’, IEEE Trans. Power Syst., 2015, 30, pp. 21192129.
    10. 10)
      • 7. Chaudry, M., Jenkins, N., Qadrdan, M., et al: ‘Combined gas and electricity network expansion planning’, Appl. Energy, 2014, 113, pp. 11711187.
    11. 11)
      • 38. Aghaei, J., Amjady, N., Baharvandi, A., et al: ‘Generation and transmission expansion planning: MILP–based probabilistic model’, IEEE Trans. Power Syst., 2014, 29, pp. 15921601.
    12. 12)
      • 19. Odetayo, B., Kazemi, M., MacCormack, J., et al: ‘A chance constrained programming approach to the integrated planning of electric power generation, natural gas network and storage’, IEEE Trans. Power Syst., 2018, 33, (6), pp. 68836893.
    13. 13)
      • 17. Zeng, Q., Zhang, B., Fang, J., et al: ‘A bi-level programming for multistage co-expansion planning of the integrated gas and electricity system’, Appl. Energy, 2017, 200, pp. 192203.
    14. 14)
      • 25. Zhang, X., Shahidehpour, M., Alabdulwahab, A.S., et al: ‘Security-constrained co-optimization planning of electricity and natural gas transportation infrastructures’, IEEE Trans. Power Syst., 2015, 30, pp. 29842993.
    15. 15)
      • 32. Xu, Y., Ding, T., Ming, Q., et al: ‘Adaptive dynamic programming based gas-power network constrained unit commitment to accommodate renewable energy with combined-cycle units’, IEEE Trans. Sustain. Energy, 2019.
    16. 16)
      • 24. Salimi, M., Ghasemi, H., Adelpour, M., et al: ‘Optimal planning of energy hubs in interconnected energy systems: a case study for natural gas and electricity’, IET Gener. Transm. Distrib., 2015, 9, pp. 695707.
    17. 17)
      • 16. Ding, T., Hu, Y., Bie, Z.: ‘Multi-stage stochastic programming with nonanticipativity constraints for expansion of combined power and natural gas systems’, IEEE Trans. Power Syst., 2018, 33, pp. 317328.
    18. 18)
      • 3. Wen, Y., Qu, X., Li, W., et al: ‘Synergistic operation of electricity and natural gas networks via ADMM’, IEEE Trans. Smart Grid, 2018, 9, (5), pp. 45554565.
    19. 19)
      • 15. Nunes, J.B., Mahmoudi, N., Saha, T.K., et al: ‘A stochastic integrated planning of electricity and natural gas networks for Queensland, Australia considering high renewable penetration’, Energy, 2018, 153, pp. 539553.
    20. 20)
      • 10. Qiu, J., Dong, Z.Y., Zhao, J.H., et al: ‘Low carbon oriented expansion planning of integrated gas and power systems’, IEEE Trans. Power Syst., 2015, 30, pp. 10351046.
    21. 21)
      • 37. Conejo, A.J., Carrión, M., Morales, J.M.: ‘Decision making under uncertainty in electricity markets’, vol. 1, (Springer, New York, NY, USA, 2010), DOI: 10.1007/978-1-4419-7421-1.
    22. 22)
      • 39. Van den Bergh, K., Delarue, E., D'haeseleer, W.: ‘DC power flow in unit commitment models’. TMF Working Paper-Energy and Environment, Tech. Rep., 2014.
    23. 23)
      • 40. De Wolf, D., Smeers, Y.: ‘The gas transmission problem solved by an extension of the simplex algorithm’, Manage. Sci., 2000, 46, pp. 14541465.
    24. 24)
      • 4. Khaligh, V., Oloomi Buygi, M., Anvari-Moghaddam, A., et al: ‘A leader-follower approach to gas-electricity expansion planning problem’. IEEE 18th Int. Conf. on Environment and Electrical Engineering and 2nd Industrial and Commercial Power Systems Europe (EEEIC 2018), Palermo, Italy, 2018.
    25. 25)
      • 5. Unsihuay-Vila, C., Marangon-Lima, J., de Souza, A.Z., et al: ‘A model to long-term, multiarea, multistage, and integrated expansion planning of electricity and natural gas systems’, IEEE Trans. Power Syst., 2010, 25, pp. 11541168.
    26. 26)
      • 14. Zhao, B., Conejo, A.J., Sioshansi, R.: ‘Coordinated expansion planning of natural gas and electric power systems’, IEEE Trans. Power Syst., 2018, 33, (3), pp. 30643075.
    27. 27)
      • 26. Zhang, X., Che, L., Shahidehpour, M., et al: ‘Reliability-based optimal planning of electricity and natural gas interconnections for multiple energy hubs’, IEEE Trans. Smart Grid, 2017, 8, pp. 16581667.
    28. 28)
      • 22. He, C., Wu, L., Liu, T., et al: ‘Robust co-optimization scheduling of electricity and natural gas systems via ADMM’, IEEE Trans. Sustain. Energy, 2017, 8, pp. 658670.
    29. 29)
      • 35. Chaudry, M., Jenkins, N., Strbac, G.: ‘Multi-time period combined gas and electricity network optimisation’, Electr. Power Syst. Res., 2008, 78, pp. 12651279.
    30. 30)
      • 31. Aminov, Z., Nakagoshi, N., Xuan, T.D., et al: ‘Evaluation of the energy efficiency of combined cycle gas turbine. Case study of Tashkent thermal power plant, Uzbekistan’, Appl. Therm. Eng., 2016, 103, pp. 501509.
    31. 31)
      • 36. Park, C.S., Kim, G., Choi, S.: ‘Engineering economics’, vol. 22 (Prentice Hall, Upper Saddle River, NJ, USA, 2007).
    32. 32)
      • 2. Banaei, M., Buygi, M.O., Zareipour, H.: ‘Impacts of strategic bidding of wind power producers on electricity markets’, IEEE Trans. Power Syst., 2016, 31, pp. 45444553.
    33. 33)
      • 1. Khaligh, V., Oloomi Buygi, M., Anvari-Moghaddam, A., et al: ‘Integrated expansion planning of gas-electricity system: a case study in Iran’. Int. Conf. on Smart Energy Systems and Technology, Seville, Spain, 2018, pp. 16.
    34. 34)
      • 41. Ojeda-Esteybar, D.M., Rubio-Barros, R.G., Añó, O., et al: ‘Integration of electricity and natural gas systems-identification of coordinating parameters’. 2014 IEEE PES Transmission & Distribution Conf. and Exposition-Latin America (PES T&D-LA), Medellin, Colombia, 2014, pp. 18.
    35. 35)
      • 46. Sahinidis, N., Tawarmalani, M.: ‘BARON: the GAMS solver manual’ (GAMS Development Corporation, Washington, DC, USA, 2004), pp. 920.
    36. 36)
      • 44. Li, Z., Shahidehpour, M., Wu, W., et al: ‘Decentralized multiarea robust generation unit and tie-line scheduling under wind power uncertainty’, IEEE Trans. Sustain. Energy, 2015, 6, pp. 13771388.
    37. 37)
      • 45. Seyedi, H., Sanaye-Pasand, M.: ‘New centralised adaptive load-shedding algorithms to mitigate power system blackouts’, IET Gener. Transm. Distrib., 2009, 3, pp. 99114.
    38. 38)
      • 30. Hu, Y., Bie, Z., Ding, T., et al: ‘An NSGA-II based multi-objective optimization for combined gas and electricity network expansion planning’, Appl. Energy, 2016, 167, pp. 280293.
    39. 39)
      • 29. Zeng, Z., Ding, T., Xu, Y., et al: ‘Reliability evaluation for integrated power-gas systems with power-to-gas and gas storages’, IEEE Trans. Power Syst., 2019, 35, pp. 571583.
    40. 40)
      • 12. Qiu, J., Yang, H., Dong, Z.Y., et al: ‘A linear programming approach to expansion co-planning in gas and electricity markets’, IEEE Trans. Power Syst., 2016, 31, pp. 35943606.
    41. 41)
      • 43. Li, Z., Wu, W., Zeng, B., et al: ‘Decentralized contingency-constrained tie-line scheduling for multi-area power grids’, IEEE Trans. Power Syst., 2017, 32, pp. 354367.
    42. 42)
      • 6. Saldarriaga, C.A., Hincapié, R.A., Salazar, H.: ‘A holistic approach for planning natural gas and electricity distribution networks’, IEEE Trans. Power Syst., 2013, 28, pp. 40524063.
    43. 43)
      • 27. He, C., Wu, L., Liu, T., et al: ‘Robust co-optimization planning of interdependent electricity and natural gas systems with a joint N − 1 and probabilistic reliability criterion’, IEEE Trans. Power Syst., 2018, 33, (2), pp. 21402154.
    44. 44)
      • 9. Barati, F., Seifi, H., Sepasian, M.S., et al: ‘Multi-period integrated framework of generation, transmission, and natural gas grid expansion planning for large-scale systems’, IEEE Trans. Power Syst., 2015, 30, pp. 25272537.
    45. 45)
      • 34. Tabkhi, F., Pibouleau, L., Azzaro-Pantel, C., et al: ‘Total cost minimization of a high-pressure natural gas network’, J. Energy Res. Technol., 2009, 131, p. 043002.
    46. 46)
      • 33. Ding, T., Xu, Y., Wei, W., et al: ‘Energy flow optimization for integrated power-gas generation and transmission systems’, IEEE Trans. Ind. Inf., 2020, 16, 3, pp. 16771687.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2019.0712
Loading

Related content

content/journals/10.1049/iet-gtd.2019.0712
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading