access icon free Control strategies to improve stability of LCC-HVDC systems with multiple MMC taps

High-voltage direct current (HVDC) is a proven technology for grid integration of renewable energy sources such as offshore wind farms and interconnecting distributed systems to main power grids. One economical solution for electrifying rural communities is to extract a small amount of power from existing HVDC transmission lines with power electronic converters, which is called tapping. This study analyses the feasibility and system performance of parallel tapping line-commutated converter (LCC)-HVDC systems with multiple full-bridge modular multilevel converters under various fault scenarios and operating conditions. Simulation results reveal that undesirable system disturbances such as DC-link voltage sags, DC-link current overshoots, and the transient reduction of inverter extinction angle are imposed on the LCC-HVDC system in the case of tap station AC side faults. Such disturbances would endanger the reliable operation of the entire LCC-HVDC system with the parallel taps. Furthermore, this study proposes two fault mitigating schemes, i.e. a tap station current modulation controller and three supplementary controller configurations, to reduce the impact of tap station AC side faults on the LCC-HVDC system. Both fault mitigating schemes are controller-based solutions, which are augmented to the existing controllers by utilising only local measurements. The proposed schemes are verified through simulations in PSCAD/EMTDC.

Inspec keywords: power convertors; power grids; HVDC power transmission; invertors; wind power plants; renewable energy sources; stability; HVDC power convertors; power supply quality; control system synthesis; power transmission control; offshore installations

Other keywords: interconnecting distributed systems; fault mitigating schemes; tap station current modulation controller; undesirable system disturbances; offshore wind farms; existing HVDC transmission lines; line-commutated converter-HVDC systems; entire LCC-HVDC system; tap station AC side faults; power electronic converters; multiple MMC taps; system stability; system performance; high-voltage direct current; parallel tapping line-commutated converter-HVDC

Subjects: Control of electric power systems; d.c. transmission; Wind power plants; Control system analysis and synthesis methods; Power convertors and power supplies to apparatus; Power system control

References

    1. 1)
      • 6. Vaughan, R. L., Bowles, J. P., Dalzell, J.: ‘The control and performance of a series connected multiterminal HVDC transmission system’, IEEE Trans. Power Appl. Syst., 1975, 94, (5), pp. 18681877.
    2. 2)
      • 15. Pilotto, L. A. S., Szechtman, M., Wey, A., et al: ‘Synchronizing and damping torque modulation controllers for multi-infeed HVDC systems’, IEEE Trans. Power Deliv., 1995, 10, (3), pp. 15051513.
    3. 3)
      • 17. Pirooz Azad, S., Iravani, R., Tate, J. E.: ‘Stability enhancement of a DC-segmented AC power system’, IEEE Trans. Power Deliv., 2015, 30, (2), pp. 737745.
    4. 4)
      • 5. Hao, Q., Ooi, B. T.: ‘Tap for classical HVDC based on multilevel current-source inverters’, IEEE Trans. Power Deliv., 2010, 25, (4), pp. 26262632.
    5. 5)
      • 21. Far, A. A. J., Hajian, M., Jovcic, D., et al: ‘High-power modular multilevel converter optimal design for DC/DC converter applications’, IET Power Electron., 2016, 9, (2), pp. 247255.
    6. 6)
      • 4. Ismail, A., Hamad, M. S., El Zawawi, A., et al: ‘A review of recent HVDC tapping topologies’. IEEE Proc. MEPCON, Cairo, Egypt, December 2016, pp. 765771.
    7. 7)
      • 3. Ekstrom, A., Lamell, P.: ‘HVDC tapping station: power tapping from a DC transmission line to a local AC network’. IEEE Proc. Int. Conf. AC and DC Power Transmission, London, UK, September 1991, pp. 126131.
    8. 8)
      • 10. Ismail, A., Hamad, M. S., Zawawi, A. E., et al: ‘Local AC network support via HVDC tapping’. IEEE Proc. MEPCON, Cairo, Egypt, December 2017, pp. 10881092.
    9. 9)
      • 9. Zhao, Z., Iravani, M. R.: ‘Application of GTO voltage source inverter in a hybrid HVDC link’, IEEE Trans. Power Deliv., 1994, 9, (1), pp. 369377.
    10. 10)
      • 19. Yazdani, A., Iravani, R.: ‘Voltage-sourced converters in power systems’ (Wiley, Hoboken, 2010, 1st edn).
    11. 11)
      • 13. Suriyaarachchi, D. H. R., Karawita, C., Mohaddes, M.: ‘Tapping existing LCC-HVdc systems with voltage source converters’. IEEE Proc. PESGM, Boston, USA, July 2016, pp. 15.
    12. 12)
      • 12. Lesnicar, A., Marquardt, R.: ‘An innovative modular multilevel converter topology suitable for a wide power range’. IEEE Proc. Bologna Power Tech Conf., Bologna, Italy, June 2003, pp. 16.
    13. 13)
      • 11. Tapping small amounts of power from HVDC transmission lines using parallel cascaded converters’. IEEE Proc. AFRICON Conf. Africa, Gaborone, Botswana, September 2004, pp. 691696, https://ieeexplore.ieee.org/document/1406773/citations?tabFilter=papers#citations.
    14. 14)
      • 22. Liu, D., Azad, S.P., Kish, G.J.: ‘Tapping line commutated converter (LCC) – high voltage direct current (HVDC) systems with modular multilevel converters (MMCs)’. Proc. CIGRE Canada Conf., Calgary, Canada, October 2018, pp. 18.
    15. 15)
      • 7. Sau-Bassols, J., Egea-Alvarez, A., Prieto-Araujo, E., et al: ‘Current source converter series tapping of a LCC-HVDC transmission system for integration of offshore wind power plants’. Proc. IET Int. Conf. AC and DC Power Transmission, Birmingham, UK, February 2015, pp. 17.
    16. 16)
      • 1. Kundur, P.: ‘Power system stability and control’ (McGraw-Hill, New York, 1994).
    17. 17)
      • 18. Szechtman, M., Wess, T., Thio, C. V.: ‘A benchmark model for HVDC system studies’. IEEE Proc. Int. Conf. AC and DC Power Transmission, London, UK, September 1991, pp. 374378.
    18. 18)
      • 20. Tu, Q., Xu, Z., Xu, L.: ‘Reduced switching-frequency modulation and circulating current suppression for modular multilevel converters’, IEEE Trans. Power Deliv., 2011, 26, (3), pp. 20092017.
    19. 19)
      • 2. Bahram, M., Baker, M., Bowles, J., et al: ‘Integration of small taps into (existing) HVDC links’, IEEE Trans. Power Deliv., 1995, 10, (3), pp. 16991706.
    20. 20)
      • 14. Jacobson, D.A.N., Wang, P., Howell, S., et al: ‘Hybrid multi-terminal HVDC-LCC with VSC converter taps: a Manitoba case study’. Proc. CIGRE Paris Conf., Paris, France, August 2018, pp. 112.
    21. 21)
      • 16. Qi, Q., Jiao, L., Liu, X., et al: ‘Multi-infeed AC/DC system dynamic performances and the study of control coordination’. IEEE Proc. Int. Conf. Power System Technology, Kunming, China, October 2002, pp. 5761.
    22. 22)
      • 8. Ranjram, M., Lehn, P. W.: ‘A multiport power-flow controller for DC transmission grids’, IEEE Trans. Power Deliv., 2016, 31, (1), pp. 389396.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2019.0653
Loading

Related content

content/journals/10.1049/iet-gtd.2019.0653
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading