access icon free Multi-variable constrained non-linear optimal planning and operation problem for isolated microgrids with stochasticity in wind, solar, and load demand data

A microgrid (MG) is a cluster of small-scale sources known as micro-sources, the energy storage devices, and the loads. MGs are promising entities that allow a considerable amount of renewable energy penetration into the system. A stochastic optimisation model is presented in this study to find the optimal size of the distributed energy resources (DERs). The uncertainties are considered with the help of multiple scenarios of random variables viz. wind output, solar output, and load demand data. A particular case of Beta distribution is used to create these variations. A cost-based, multi-variable constrained non-linear objective function is formulated. The considered test MG system is more generalized with solar and wind energy penetration. The results show the effect of operational as well as the planning aspects together under various reliability conditions for an isolated MG. The formulated problem is solved to obtain a global optimal solution using a sequential programming approach and a comparative assessment of results with a hybrid particle swarm optimisation (PSO) approach has also been presented. It is found that the results obtained from the sequential programming approach are better compared to the hybrid PSO approach.

Inspec keywords: particle swarm optimisation; power generation reliability; stochastic programming; power distribution reliability; power distribution planning; distributed power generation; power generation planning

Other keywords: cost-based function; microsources; microgrid; multivariable constrained nonlinear optimal planning; operational costs; random variables; system constraints; load demand data; wind output; sequential programming approach; solar output; operation problem; global optimal solution; stochasticity; isolated microgrids; reliability conditions; Beta distribution; optimal size; DERs; test MG system; renewable energy penetration; isolated MG; hybrid particle swarm optimisation approach; nonlinear objective function; stochastic optimisation model; small-scale sources; energy storage devices; optimal sizing; distributed energy resources

Subjects: Distributed power generation; Power system planning and layout; Reliability; Optimisation techniques

References

    1. 1)
      • 32. Guo, Y., Zhao, C.: ‘Islanding-aware robust energy management for microgrids’, IEEE Trans. Smart Grid, 2018, 9, (2), pp. 13011309.
    2. 2)
      • 7. Sachidananda, S., Vishal, K.: ‘Microgrid modelling: a comprehensive survey’, Annu. Rev. Control, 2018, 46, pp. 216250.
    3. 3)
      • 34. Venkatesh, B., Yu, P., Gooi, H.B., et al: ‘Fuzzy MILP unit commitment incorporating wind generators’, IEEE Trans. Power Syst., 2008, 23, (4), pp. 17381746.
    4. 4)
      • 16. Hossein, K., Jamshid, A., Khorramdel, B., et al: ‘Optimal battery sizing in microgrids using probabilistic unit commitment’, IEEE Trans. Ind. Inf., 2016, 12, (2), pp. 834843.
    5. 5)
      • 9. Meiqin, M., Peng, J., Chang, L., et al: ‘Economic analysis and optimal design on microgrids with SS-PVs for industries’, IEEE Trans. Sustain. Energy, 2014, 5, (4), pp. 13281336.
    6. 6)
      • 13. Koh, L.H., Wang, P., Choo, F.H., et al: ‘Operational adequacy studies of a PV-based and energy storage stand-alone microgrid’, IEEE Trans. Power Syst., 2015, 30, (2), pp. 892900.
    7. 7)
      • 3. Chen, H.B., Gooi, S.X., Wang, M.Q.: ‘Sizing of energy storage for microgrids’, IEEE Trans. Smart Grid, 2012, 3, (1), pp. 142151.
    8. 8)
      • 18. Wang, H., Huang, J.: ‘Joint investment and operation of microgrid’, IEEE Trans. Smart Grid, 2017, 8, (2), pp. 833845.
    9. 9)
      • 2. Maneesh, K., Barjeev, T.: ‘A state of art review of microgrid control and integration aspects’. IEEE Int. Conf. on Power Electronics (IICPE), Patiala, India, 2016, pp. 16.
    10. 10)
      • 33. Zhao, B., Qiu, H., Qin, R., et al: ‘Robust optimal dispatch of AC/DC hybrid microgrids considering generation and load uncertainties and energy storage loss’, IEEE Trans. Power Syst., 2018, 33, (6), pp. 59455957.
    11. 11)
      • 26. Apurva, N., Kumaraswamy, P.: ‘Risk-averse stochastic programming approach for microgrid planning under uncertainty’, Renew. Energy, 2017, 101, (5), pp. 399408.
    12. 12)
      • 5. Changsong, C., Shanxu, D., Cai, T., et al: ‘Optimal allocation and economic analysis of energy storage system in microgrids’, IEEE Trans. Power Electron., 2011, 26, (10), pp. 27622773.
    13. 13)
      • 6. Li, G., Wenjian, L., Hong, B., et al: ‘Multi-objective stochastic optimal planning method for stand-alone microgrid system’, IET Gener. Transm. Distrib., 2013, 8, (7), pp. 12631273.
    14. 14)
      • 14. Julia, S., Oliver, S.: ‘A two-stage model predictive control strategy for economic diesel-PV-battery island microgrid operation in rural areas’, IEEE Trans. Sustain. Energy, 2016, 7, (3), pp. 903913.
    15. 15)
      • 22. Chun, S.L., Malcolm, D.M.: ‘Sizing of stand-alone solar PV and storage system with anaerobic digestion biogas power plants’, IEEE Trans. Ind. Electron., 2017, 64, (3), pp. 21122121.
    16. 16)
      • 17. Biswas, P., Suganthan, P.N., Amaratunga, G.A.J., et al: ‘Optimal power flow solutions incorporating stochastic wind and solar power’, Energy Convers. Manage., 2017, 148, pp. 11941207.
    17. 17)
      • 29. Jiang, J.-J., He, P., Fang, K.-T.: ‘An interesting property of the arcsine distribution and its applications’, Stat. Probab. Lett., 2015, (105), pp. 8895.
    18. 18)
      • 30. Kumar, A., Singh, A., Yan, D., et al: ‘Multiyear load growth based techno-financial evaluation of a microgrid for an academic institution’, IEEE Access J., 2018, (6), pp. 3753337555.
    19. 19)
      • 36. Bog, P.T., Tollle, J.W.: ‘Sequential quadratic programming’, Acta Numer., 1995, (4), pp. 151.
    20. 20)
      • 27. Maneesh, K., Barjeev, T.: ‘An optimal multivariable constrained nonlinear (MVCNL) stochastic microgrid planning and operation problem with renewable penetration’, IEEE Syst. J., 2020, pp. 112, doi: 10.1109/JSYST.2019.2963729.
    21. 21)
      • 10. Liang, C., Zhang, X., Shahidehpour, M., et al: ‘Optimal interconnection planning of community microgrids with renewable energy sources’, IEEE Trans. Smart Grid, 2017, 8, (3), pp. 10541063.
    22. 22)
      • 4. Khodaei, A., Shahidehpour, M.: ‘Microgrid-based co-optimization of generation and transmission planning in power systems’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 15821590.
    23. 23)
      • 25. Gazijahani, F.S., Javad, S.: ‘Optimal bilevel model for stochastic risk-based planning of microgrids under uncertainty’, IEEE Trans. Ind. Inf., 2018, 14, (7), pp. 30543064.
    24. 24)
      • 28. Berkowitz, L.D.: ‘Convexity and optimization’ (Wiley-Inter-Science, New York, 2001).
    25. 25)
      • 19. Mohamed, S., Mostafa, F.S., Ismail, M., et al: ‘An efficient planning algorithm for hybrid remote microgrids’, IEEE Trans. Sustain. Energy, 2019, 10, (1), pp. 557567.
    26. 26)
      • 1. Lasseter, B.: ‘Microgrids (distributed power generation)’. IEEE Power Engineering Society Winter Meeting Conf. Proc., Columbus, OH, USA, 2001, pp. 146149.
    27. 27)
      • 35. Gill, P.E., Murray, W., Saunders, M.A., et al: ‘SNOPT: an SQP algorithm for large-scale constrained optimization’, Soc. Ind. Appl. Math., 2005, 47, (1), pp. 99131.
    28. 28)
      • 21. Akram, U., Khalid, M., Shafiq, S., et al: ‘Optimal sizing of a wind/solar/battery hybrid grid-connected microgrid system’, IET Renew. Power Gener., 2017, 12, (1), pp. 7280.
    29. 29)
      • 23. Liu, P., Cai, Z., Li, X., et al: ‘A decomposition–coordination planning method for flexible generation resources in isolated microgrids’, IEEE Access, 2019, (7), pp. 7672076730.
    30. 30)
      • 31. Hoppe, R.H.W.: ‘Sequential quadratic programming (SQP)’. Available at https://www.math.uh.edu/~rohop/fall_06/, 2006, pp. 118.
    31. 31)
      • 8. Jun, X., Linquan, B., Fangxing, L., et al: ‘Sizing of energy storage and diesel generators in an isolated microgrid using discrete Fourier transform (DFT)’, IEEE Trans. Sustain. Energy, 2014, 5, (3), pp. 907916.
    32. 32)
      • 15. Arriaga, M., Caizares, C.A., Kazerani, M.: ‘Long-term renewable energy planning model for remote communities’, IEEE Trans. Sustain. Energy, 2016, 7, (1), pp. 221230.
    33. 33)
      • 20. Solanki, B.V., Bhattacharya, K., Cañizares, C.A., et al: ‘A sustainable energy management system for isolated microgrids’, IEEE Trans. Sustain. Energy, 2017, 8, (4), pp. 15071517.
    34. 34)
      • 11. Jabbari-Sabet, R., Moghaddas-Tafreshi, S.-M., Mirhoseini, S.-S.: ‘Microgrid operation and management using probabilistic reconfiguration and unit commitment’, Electr. Power Energy Syst., 2015, 75, pp. 328336.
    35. 35)
      • 12. Amin, K., Shay, B., Shahidehpour, M.: ‘Microgrid planning under uncertainty’, IEEE Trans. Power Syst., 2015, 30, (5), pp. 24172425.
    36. 36)
      • 24. Zhaohao, D., Xie, L., Lu, Y., et al: ‘Emission-aware stochastic resource planning scheme for data center microgrid considering batch workload scheduling and risk management’, IEEE Trans. Ind. Applic., 2018, 54, (6), pp. 55995608.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2019.0643
Loading

Related content

content/journals/10.1049/iet-gtd.2019.0643
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading