Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Optimal dispatch scheme for DSO and prosumers by implementing three-phase distribution locational marginal prices

Since the distribution system operator (DSO) cannot directly control prosumers with controllable resources, this study proposes an optimal dispatch method of using three-phase distribution locational marginal prices (DLMPs) as effective economic signals to incentivise prosumers' behaviours. In the proposed three-phase DLMP model, DLMPs for active power demand, active power output and reactive power output are calculated. To alleviate the imbalance, congestions and voltage violations in active distribution networks (ADNs), the DSO and prosumers should be coordinated. The authors develop such a coordinated control scheme for the DSO and prosumers, in which the DSO generates and broadcasts three-phase DLMPs as price signals to induce prosumers' behaviours. They prove that given the DLMPs as settlement prices, the optimal dispatch of the ADN will also maximise the surplus of prosumers. Therefore, the power output of rational prosumers will match the optimal dispatch, resulting in better operational conditions of ADNs. Then the three-phase imbalance, congestions and voltage violations will be well reduced. Numerical tests demonstrate the effectiveness of the proposed approach.

References

    1. 1)
      • 12. Liu, W., Wu, Q., Wen, F., et al: ‘Day-ahead congestion management in distribution systems through household demand response and distribution congestion prices’, IEEE Trans. Smart Grid, 2014, 5, (6), pp. 27392747.
    2. 2)
      • 16. Farivar, M., Low, S.H.: ‘Branch flow model: relaxations and convexification – Part II’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 25652572.
    3. 3)
      • 26. Yaw-Juen, W., Ming-Jer, Y.: ‘Probabilistic modeling of three-phase voltage unbalance caused by load fluctuations’. IEEE Power Enginering Society Winter Meet, Singapore, 4 January 2000, pp. 25882593.
    4. 4)
      • 17. Taylor, J.A., Hover, F.S.: ‘Convex models of distribution system reconfiguration’, IEEE Trans. Power Syst., 2012, 27, (3), pp. 14071413.
    5. 5)
      • 1. Parag, Y., Benjamin, K.S.: ‘Electricity market design for the prosumer era’, Nature Energy, 2016, 1, (4), p. 16032.
    6. 6)
      • 13. Bai, L., Wang, J., Wang, C., et al: ‘Distribution locational marginal pricing (DLMP) for congestion management and voltage support’, IEEE Trans. Power Syst., 2018, 33, (4), pp. 40614073.
    7. 7)
      • 27. Chen, X., Wu, W., Zhang, B.: ‘Robust restoration method for active distribution networks’, IEEE Trans. Power Syst., 2016, 31, (5), pp. 40054015.
    8. 8)
      • 5. Alonso, M., Amarís, H., Álvarez, C., et al: ‘Reactive power planning in distribution networks with distributed generation’. Proc. 2010 7th Mediterranean Conf. Exhibition on Power Generation, Transmission, Distribution and Energy, Conversion, Ayia Napa, Cyprus, 2010, pp. 152152.
    9. 9)
      • 9. O'Connell, N., Wu, Q., Østergaard, J., et al: ‘Day-ahead tariffs for the alleviation of distribution grid congestion from electric vehicles’, Electr. Power Syst. Res., 2012, 92, pp. 106114.
    10. 10)
      • 28. Supplementary Material of Unbalanced IEEE 33-bus Distribution System for DG Capacity Assessment, January 2017. Available at https://drive.google.com/file/d/0BzBNHekT7PzcR1V4eG1NZC1EOVU/view?usp=sharin.
    11. 11)
      • 4. Malekpour, A.R., Seifi, A.R., Hesamzadeh, M.R., et al: ‘An optimal load shedding approach for distribution networks with DGs considering capacity deficiency modelling of bulked power supply’. Proc. 2008 IEEE Power Engineering Conf., Sydney, Australia, 2008, pp. 17.
    12. 12)
      • 25. Zheng, W., Wu, W., Zhang, B., et al: ‘Distributed optimal residential demand response considering operational constraints of unbalanced distribution networks’, IET Gener., Transm. Distrib., 2018, 12, (9), pp. 19701979.
    13. 13)
      • 24. Renani, Y.K., Ehsan, M., Shahidehpour, M.: ‘Optimal transactive market operations with distribution system operators’, IEEE Trans. Smart Grid, 2018, 9, (6), pp. 66926701.
    14. 14)
      • 15. Farivar, M., Low, S.H.: ‘Branch flow model: relaxations and convexification – Part I’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 25542564.
    15. 15)
      • 14. Yang, R., Zhang, Y.: ‘Three-phase AC optimal power flow based distribution locational marginal price’. 2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conf. (ISGT), Washington, DC, 2017, pp. 15.
    16. 16)
      • 11. Liu, Z., Wu, Q., Oren, S.S., et al: ‘Distribution locational marginal pricing for optimal electric vehicle charging through chance constrained mixed-integer programming’, IEEE Trans. Smart Grid, 2018, 9, (2), pp. 644654.
    17. 17)
      • 20. Chen, X., Wu, W., Zhang, B.: ‘Robust capacity assessment of distributed generation in imbalanced distribution networks incorporating ANM techniques’, IEEE Trans. Sustain. Energy, 2018, 9, (2), pp. 651663.
    18. 18)
      • 3. Huang, S., Wu, Q., Oren, S.S., et al: ‘Distribution locational marginal pricing through quadratic programming for congestion management in distribution networks’, IEEE Trans. Power Syst., 2015, 30, (4), pp. 21702178.
    19. 19)
      • 18. Li, N., Chen, L., Low, S.H.: ‘Exact convex relaxation of OPF for radial networks using branch flow model’. 2012 IEEE Third Int. Conf. Smart Grid Communications (SmartGridComm), Tainan, 2012, pp. 712.
    20. 20)
      • 22. Tushar, W., Zhang, J.A., Smith, D.B., et al: ‘Prioritizing consumers in smart grid: a game theoretic approach’, IEEE Trans. Smart Grid, 2014, 5, (3), pp. 14291438.
    21. 21)
      • 19. Liu, Y., Li, J., Wu, L.: ‘Distribution system restructuring: distribution LMP via imbalanced ACOPF’, IEEE Trans. Smart Grid, 2018, 9, (5), pp. 40384048.
    22. 22)
      • 8. Meng, F., Chowdhury, B.H.: ‘Distribution LMP-based economic operation for future smart grid’. Proc. IEEE Power Energy Conf., Illinois, 2011, pp. 15.
    23. 23)
      • 2. Ghijselen, J.A.L., Van den Bossche, A.P.M.: ‘Exact voltage unbalance assessment without phase measurements’, IEEE Trans. Power Syst., 2005, 20, (1), pp. 519520.
    24. 24)
      • 10. Li, R., Wu, Q., Oren, S.S.: ‘Distribution locational marginal pricing for optimal electric vehicle charging management’, IEEE Trans. Power Syst., 2014, 29, (1), pp. 203211.
    25. 25)
      • 23. Qiu, J., Meng, K., Zheng, Y., et al: ‘Optimal scheduling of distributed energy resources as a virtual power plant in a transactive energy framework’, IET Gener. Transm. Distrib., 2017, 11, pp. 34173427.
    26. 26)
      • 6. Sotkiewicz, P.M., Vignolo, J.M.: ‘Nodal pricing for distribution networks: efficient pricing for efficiency enhancing DG’, IEEE Trans. Power Syst., 2006, 21, (2), pp. 10131014.
    27. 27)
      • 7. Singh, R.K., Goswami, S.K.: ‘Optimum allocation of distributed generations based on nodal pricing for profit, loss reduction, and voltage improvement including voltage rise issue’, Int. J. Electr. Power Energy Syst., 2010, 32, (6), pp. 637644.
    28. 28)
      • 21. de la Torre, S., Conejo, A.J., Contreras, J.: ‘Simulating oligopolistic pool-based electricity markets: a multiperiod approach’, IEEE Trans. Power Syst., 2003, 18, (4), pp. 15471555, doi: 10.1109/TPWRS.2003.818746.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2019.0603
Loading

Related content

content/journals/10.1049/iet-gtd.2019.0603
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address