access icon free Coordinated voltage/var control in a hybrid AC/DC distribution network

A hybrid AC/DC distribution network (HDN) is formed after multiple hybrid AC/DC microgrids (MGs) and distributed generators (DGs) are integrated into the distribution network. Voltage/var control (VVC) in this evolved system constitutes a big challenge to system operators as a large variety of voltage control devices with quite different control characteristics are expected to be co-managed. This study proposes a coordinated VVC scheme to regulate voltage in an HDN by integrating power management model of hybrid AC/DC MGs into HDN's VVC model. The devices at HDN's level and those in MGs are allocated into two different models, and two models are linked via an approach called mathematical programmes with equilibrium constraints to achieve system-wide coordination. In the proposed VVC, mechanical devices such on-load-tap changer (OLTC) and shunt capacitor (SC) are scheduled every 2 h to save their lifetime, while the electronically interfaced DGs and MGs are scheduled every 30 min to leverage their fast power support. Case studies on a modified IEEE 33 nodes distribution system validate that the proposed VVC can effectively coordinate MGs' power support with OLTC, SCs, and DGs, and it constitutes significant improvements on power loss reduction and voltage quality compared with traditional VVC.

Inspec keywords: voltage regulators; distributed power generation; power generation control; power distribution control; on load tap changers; voltage control; power distribution reliability; distribution networks

Other keywords: distributed generators; HDN's VVC model; time 30.0 min; time 2.0 hour; voltage control devices; coordinated VVC scheme; power management model; system-wide coordination; modified IEEE 33 nodes distribution system validate; different control characteristics

Subjects: Optimisation techniques; Distribution networks; Power system control; Distributed power generation; Voltage control; Control of electric power systems; Reliability

References

    1. 1)
      • 15. Wang, X., Wang, C., Xu, T., et al: ‘Decentralised voltage control with built-in incentives for participants in distribution networks’, IET Gener. Transm. Distrib., 2017, 12, (3), pp. 790797.
    2. 2)
      • 2. Eid, B.M., Abd Rahim, N., Selvaraj, J., et al: ‘Control methods and objectives for electronically coupled distributed energy resources in microgrids: a review’, IEEE Syst. J., 2016, 10, (2), pp. 446458.
    3. 3)
      • 5. Turitsyn, K., Sulc, P., Backhaus, S., et al: ‘Options for control of reactive power by distributed photovoltaic generators’, Proc. IEEE, 2011, 99, (6), pp. 10631073.
    4. 4)
      • 9. Zhang, L., Chen, Y., Shen, C., et al: ‘Coordinated voltage regulation of hybrid AC/DC medium-voltage distribution networks’, J. Mod. Power Syst. Clean Energy, 2018, 6, (3), pp. 463472.
    5. 5)
      • 24. Miller, N.W., Zrebiec, R.S., Hunt, G., et al: ‘Design and commissioning of a 5 MVA, 2.5 MWH battery energy storage system’. 1996 IEEE Transmission and Distribution Conf. Proc., Los Angeles, CA, USA, 1996, pp. 339345.
    6. 6)
      • 10. Marvasti, A.K., Fu, Y., DorMohammadi, S., et al: ‘Optimal operation of active distribution grids: a system of systems framework’, IEEE Trans. Smart Grid, 2014, 5, (3), pp. 12281237.
    7. 7)
      • 19. Liu, X., Wang, P., Loh, P.C.: ‘A hybrid AC/DC microgrid and its coordination control’, IEEE Trans. Smart Grid, 2011, 2, (2), pp. 278286.
    8. 8)
      • 4. Radwan, A.A.A., Mohamed, Y.A.R.I.: ‘Networked control and power management of AC/DC hybrid microgrids’, IEEE Syst. J., 2017, 11, (3), pp. 16621673.
    9. 9)
      • 18. Majzoobi, A., Khodaei, A.: ‘Application of microgrids in supporting distribution grid flexibility’, IEEE Trans. Power Syst., 2017, 32, (5), pp. 36603669.
    10. 10)
      • 23. Tu, C.M., Xiao, F., Lan, Z., et al: ‘Research of the high supply voltage quality control for solid-state transformer’, IET Power Electron., 2018, 11, (11), pp. 17881795.
    11. 11)
      • 21. Baran, M.E., Wu, F.F.: ‘Network reconfiguration in distribution systems for loss reduction and load balancing’, IEEE Trans. Power Deliv., 1989, 4, (2), pp. 14011407.
    12. 12)
      • 17. Xiang, Y., Liu, J.Y., Liu, Y.L.: ‘Robust energy management of microgrid with uncertain renewable generation and load’, IEEE Trans. Smart Grid, 2016, 7, (2), pp. 10341043.
    13. 13)
      • 22. Mazalov, V.: ‘Mathematical game theory and applications’ (John Wiley & Sons, Inc., West Sussex, UK, 2014).
    14. 14)
      • 14. Madureira, A.G., Lopes, J.A.P.: ‘Coordinated voltage support in distribution networks with distributed generation and microgrids’, IET Renew. Power Gener., 2009, 3, (4), pp. 439454.
    15. 15)
      • 6. Kim, Y.J., Kirtley, J.L., Norford, L.K.: ‘Reactive power ancillary service of synchronous DGs in coordination with voltage control devices’, IEEE Trans. Smart Grid, 2017, 8, (2), pp. 515527.
    16. 16)
      • 7. Xu, Y., Dong, Z.Y., Zhang, R., et al: ‘Multi-timescale coordinated voltage/var control of high renewable-penetrated distribution systems’, IEEE Trans. Power Syst., 2017, 32, (6), pp. 43984408.
    17. 17)
      • 20. Baboli, P.T., Shahparasti, M., Moghaddam, M.P., et al: ‘Energy management and operation modelling of hybrid AC–DC microgrid’, IET Gener. Transm. Distrib., 2014, 8, (10), pp. 17001711.
    18. 18)
      • 16. Dou, X., Xu, P., Hu, Q., et al: ‘A distributed voltage control strategy for multi-microgrid active distribution networks considering economy and response speed’, IEEE Access, 2018, 6, pp. 3125931268.
    19. 19)
      • 25. Luo, Z.-Q., Pang, J.-S., Ralph, D.: ‘Mathematical programs with equilibrium constraints’ (Cambridge University Press, Cambridge, UK, 1996).
    20. 20)
      • 12. Tian, P.G., Xiao, X., Wang, K., et al: ‘A hierarchical energy management system based on hierarchical optimization for microgrid community economic operation’, IEEE Trans. Smart Grid, 2016, 7, (5), pp. 22302241.
    21. 21)
      • 1. Lasseter, R.H.: ‘Smart distribution: coupled microgrids’, Proc. IEEE, 2011, 99, (6), pp. 10741082.
    22. 22)
      • 26. Bard, J.F.: ‘Practical bilevel optimization: algorithms and applications’ (Springer Science & Business Media, Boston, USA, 2013).
    23. 23)
      • 8. Meirinhos, J.L., Rua, D.E., Carvalho, L.M., et al: ‘Multi-temporal optimal power flow for voltage control in MV networks using distributed energy resources’, Electr. Power Syst. Res., 2017, 146, pp. 2532.
    24. 24)
      • 11. Nikmehr, N., Ravadanegh, S.N.: ‘Optimal power dispatch of multi-microgrids at future smart distribution grids’, IEEE Trans. Smart Grid, 2015, 6, (4), pp. 16481657.
    25. 25)
      • 13. Wang, Z.Y., Chen, B.K., Wang, J.H., et al: ‘Coordinated energy management of networked microgrids in distribution systems’, IEEE Trans. Smart Grid, 2015, 6, (1), pp. 4553.
    26. 26)
      • 3. Golsorkhi, M.S., Hill, D.J., Karshenas, H.R.: ‘Distributed voltage control and power management of networked microgrids’, IEEE J. Emerg. Sel. Top. Power Electron., 2018, 6, (4), pp. 18921902.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2019.0390
Loading

Related content

content/journals/10.1049/iet-gtd.2019.0390
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading