access icon free Bi-level optimal planning model of power flow router based on convex relaxation optimisation and sensitivity analysis method

To improve the utilisation of renewable energy and the power transmission capacity in the power system, the concept of power flow router (PFR) is proposed by scholars worldwide. However, there lacks an optimal planning method for PFR based on the economic principle, which impedes the development of PFR. To solve the above problem, the optimal location and capacity planning method of PFR is researched in this study, where a bi-level algorithm based on the convex relaxation optimisation and sensitivity analysis method is proposed. First, the definition and the general power flow model of PFR are introduced. According to the principle of engineering economy, the allocation model of PFR is established by introducing the binary variables. To solve the non-linear and non-convex mixed-integer programming problem, this study proposes a bi-level algorithm with the convex relaxation optimisation and sensitivity analysis method. Finally, the case studies are conducted in IEEE 30, IEEE 57 and IEEE 118 systems. The calculation results of the optimal power flow, planning results and economical analysis of PFRs are verified in IEEE 30, 57 and 118 systems, which shows the accuracy of the proposed algorithm.

Inspec keywords: power system planning; integer programming; load flow; sensitivity analysis; nonlinear programming

Other keywords: optimal planning method; nonlinear mixed-integer programming problem; general power flow model; capacity planning method; sensitivity analysis method; optimal location; power transmission capacity; level optimal planning model; nonconvex mixed-integer programming problem; optimal power flow; bi-level algorithm; power system; power flow router; convex relaxation optimisation; PFR

Subjects: Optimisation techniques; Power system planning and layout

References

    1. 1)
      • 19. Lima, F.G.M., Galiana, F.D., Kockar, I., et al: ‘Phase shifter placement in large-scale systems via mixed-integer linear programming’, IEEE Trans. Power Syst., 2003, 18, (3), pp. 10291034.
    2. 2)
      • 28. Mínguez, R., Milano, F., Zárate-Miñano, R., et al: ‘Optimal network placement of SVC devices’, IEEE Trans. Power Syst., 2007, 22, (4), pp. 18511860.
    3. 3)
      • 13. Wang, X., Wang, H., Yang, J., et al: ‘Application of 500 kV UPFC in Suzhou southern power grid’, J. Eng., 2019, 2019, (16), pp. 25802584.
    4. 4)
      • 2. Hand, M.M., Baldwin, S., DeMeo, E., et al: ‘Renewable electricity futures study’. National Renewable Energy Laboratory, CO, 2014.
    5. 5)
      • 23. Tiwari, P.K., Sood, Y.R.: ‘Efficient and optimal approach for location and parameter setting of multiple unified power flow controllers for a deregulated power sector’, IET Gener. Transm. Distrib., 2012, 6, (10), pp. 958967.
    6. 6)
      • 5. Xu, M., Xie, P., Xie, B.-C.: ‘Study of China's optimal solar photovoltaic power development path to 2050’, Resour. Policy, 2020, 65, pp. 113.
    7. 7)
      • 22. An, S., Condren, J., Gedra, T.W.: ‘An ideal transformer UPFC model, OPF first-order sensitivities, and application to screening for optimal UPFC locations’, IEEE Trans. Power Syst., 2007, 22, (1), pp. 6875.
    8. 8)
      • 1. Schellekens, G., Battaglini, A., Lilliestam, J., et al: ‘100% Renewable electricity: a roadmap to 2050 for Europe and North Africa’. PricewaterhouseCoopers, London, UK, 2010.
    9. 9)
      • 8. Gyugyi, L., Schauder, C.D., Williams, S.L., et al: ‘The unified power flow controller: a new approach to power transmission control’, IEEE Trans. Power Deliv., 1995, 10, (2), pp. 10851097.
    10. 10)
      • 7. Zhang, Y., Tang, N., Niu, Y., et al: ‘Wind energy rejection in China: current status, reasons and perspectives’, Renew. Sustain. Energy Rev., 2016, 66, pp. 322344.
    11. 11)
      • 31. Leonidaki, E.A., Georgiadis, D.P., Hatziargyriou, N.D.: ‘Decision trees for determination of optimal location and rate of series compensation to increase power system loading margin’, IEEE Trans. Power Syst., 2006, 21, (3), pp. 13031310.
    12. 12)
      • 16. Lin, J., Li, V.O.K., Leung, K.-C., et al: ‘Optimal power flow with power flow routers’, IEEE Trans. Power Syst., 2017, 32, (1), pp. 531543.
    13. 13)
      • 15. Lin, J., Li, V.O.K., Leung, K.-C., et al: ‘Architectural design and load flow study of power flow routers’. 2014 IEEE Int. Conf. Smart Grid Communications (Smart Grid Comm), Venice, 2014, pp. 3742.
    14. 14)
      • 21. Thukaram, D., Jenkins, L., Visakha, K.: ‘Improvement of system security with unified-power-flow controller at suitable locations under network contingencies of interconnected systems’, IEE Proc., Gener. Transm. Distrib., 2005, 152, (5), pp. 682690.
    15. 15)
      • 25. Ranganathan, S., Kalavathi, M.S.: ‘Self-adaptive firefly algorithm-based multi-objectives for multi-type FACTS placement’, IET Gener. Transm. Distrib., 2016, 10, (11), pp. 25762584.
    16. 16)
      • 6. Lu, Z., Li, H., Qiao, Y.: ‘Probabilistic flexibility evaluation for power system planning considering its association with renewable power curtailment’, IEEE Trans. Power Syst., 2018, 33, (3), pp. 32853295.
    17. 17)
      • 30. Sen, D., Gupta, M., Shegaonkar, M., et al: ‘Optimal location determination of UPFC based on techno-economic criteria and security constraints’. 2018 Int. Conf. Power Energy, Environment and Intelligent Control (PEEIC), Greater Noida, India, 2018, pp. 534539.
    18. 18)
      • 3. Energy Research Institute National Development and Re-form Commission: ‘China 2050 high renewable energy penetration scenario and roadmap study’. Energy Research Institute National Development and Reform Commission, Beijing, 2015.
    19. 19)
      • 24. Duan, C., Fang, W., Jiang, L., et al: ‘FACTS devices allocation via sparse optimization’, IEEE Trans. Power Syst., 2015, 31, (2), pp. 13081319.
    20. 20)
      • 4. Yuan, J., Sun, S., Shen, J., et al: ‘Wind power supply chain in China’, Renew. Sustain. Energy Rev., 2014, 39, pp. 356369.
    21. 21)
      • 12. Cui, Y., Yu, Y., Bao, W., et al: ‘Analysis of application effect of 220 kV UPFC demonstration project in Shanghai grid’, J. Eng., 2019, 2019, (16), pp. 758762.
    22. 22)
      • 17. Paterni, P., Vitet, S., Bena, M., et al: ‘Optimal location of phase shifters in the French network by genetic algorithm’, IEEE Trans. Power Syst., 1999, 14, (1), pp. 3742.
    23. 23)
      • 18. Ghahremani, E., Kamwa, I.: ‘Optimal placement of multiple-type FACTS devices to maximize power system loadability using a generic graphical user interface’, IEEE Trans. Power Syst., 2012, 28, (2), pp. 764778.
    24. 24)
      • 14. Blaauwbroek, N., Nguyen, P.H., Konsman, M.J., et al: ‘Decentralized resource allocation and load scheduling for multicommodity smart energy systems’, IEEE Trans. Sustain. Energy, 2015, 6, (4), pp. 15061514.
    25. 25)
      • 10. Chang, B.H., Choo, J.B., Kim, J.-M., et al: ‘Development of FACTS operation technology to the KEPCO power network-development of education program for 80 MVA UPFC operator’. IEEE/PES Transmission and Distribution Conf. Exhibition, Yokohama, Japan, 2002, vol. 3, pp. 20142018.
    26. 26)
      • 32. Bennon, R.J., Juves, J.A., Meliopoulos, A.P.: ‘Use of sensitivity analysis in automated transmission planning’, IEEE Trans. Power Appar. Syst., 1982, PAS-101, (1), pp. 5359.
    27. 27)
      • 34. MOSEK ApS. The MOSEK Optimization Toolbox for MATLAB Manual. Version 7.1 (Revision 28), 2015. Available at http://docs.mosek.com/7.1/toolbox/index.html, accessed 2nd October, 2018.
    28. 28)
      • 35. Zimmerman, R.D., Murillo-Sánchez, C.E., Thomas, R.J.: ‘MATPOWER: steady-state operations, planning and analysis tools for power systems research and education’, IEEE Trans. Power Syst., 2011, 26, (1), pp. 1219.
    29. 29)
      • 26. Ara, A.L., Kazemi, A., Niaki, S.A.N.: ‘Multiobjective optimal location of FACTS shunt-series controllers for power system operation planning’, IEEE Trans. Power Deliv., 2011, 27, (2), pp. 481490.
    30. 30)
      • 9. Renz, B.A.: ‘AEP unified power flow controller performance’, IEEE Trans. Power Deliv., 1999, 14, (4), pp. 13741381.
    31. 31)
      • 29. Jabr, R.A., Martins, N., Pal, B.C., et al: ‘Contingency constrained VAr planning using penalty successive conic programming’, IEEE Trans. Power Syst., 2011, 27, (1), pp. 545553.
    32. 32)
      • 33. Grant, M., Boyd, S.: ‘CVX: MATLAB software for disciplined convex programming’, version 2.1, March 2014. Available at http://cvxr.com/cvx, accessed 2nd October, 2018.
    33. 33)
      • 20. Ugranli, F., Karatepe, E.: ‘Coordinated TCSC allocation and network reinforcements planning with wind power’, IEEE Trans. Sustain. Energy, 2017, 8, (4), pp. 16941705.
    34. 34)
      • 27. Galloway, S.J., Elders, I.M., Burt, G.M., et al: ‘Optimal flexible alternative current transmission system device allocation under system fluctuations due to demand and renewable generation’, IET Gener. Transm. Distrib., 2010, 4, (6), pp. 725735.
    35. 35)
      • 11. Yang, X., Wang, W., Cai, H., et al: ‘Installation, system-level control strategy and commissioning of the Nanjing UPFC project’. 2017 IEEE Power & Energy Society General Meeting (PESGM), Chicago, IL, USA, 2017.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2019.0356
Loading

Related content

content/journals/10.1049/iet-gtd.2019.0356
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading