Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Employment of quasi oppositional SSA-based two-degree-of-freedom fractional order PID controller for AGC of assorted source of generations

A novel quasi-oppositional-based salp swarm algorithm (QSSA) is used to obtain the optimal values of controllers for automatic generation control of the two-area, assorted source of the generation-based power system. Thermal, hydro, and gas generating units are considered in the power system. Optimal values of proportional–integral–derivative (PID) controllers obtained using SSA and QSSA are compared with that of PID controllers based on differential evolution, teaching learning-based optimisation, and imperialist competitive algorithm. Observing the superiority with a QSSA-based PID controller, the study is protracted to obtain the optimal values of two-degree-of-freedom conventional PID (2DOF-PID) and 2DOF fractional order PID (2DOF-FOPID) controller with SSA and QSSA techniques. It is evidenced that QSSA outperforms SSA and also the QSSA-based 2DOF-FOPID controller establishes a better dynamic response than other controllers. 2DOF-FOPID controller is also employed for the system with generation rate constraint (GRC). The complete analysis is carried out by applying a step load disturbance of 1 p.u. in area-1. Robustness of the controller is verified by varying the systems' parameters and a randomly varying loading pattern in both areas with and without GRC. In both cases, the proposed QSSA-based 2DOF-FOPID controller is found firmly robust.

References

    1. 1)
      • 10. Panda, S., Yegireddy, N.K.: ‘Automatic generation control of multi-area power system using multi-objective non-dominated sorting genetic algorithm-II’, Int. J. Electr. Power Energy Syst., 2013, 53, pp. 5463.
    2. 2)
      • 21. Li, H., Luo, Y., Chen, Y.: ‘A fractional order proportional and derivative (FOPD) motion controller: tuning rule and experiments’, IEEE Trans. Control Syst. Technol., 2010, 18, (2), pp. 516520.
    3. 3)
      • 16. Arya, Y., Kumar, N.: ‘Design and analysis of BFOA-optimized fuzzy PI/PID controller for AGC of multi-area traditional/restructured electrical power systems’, Soft Comput., 2017, 21, (21), pp. 64356452.
    4. 4)
      • 14. Kumar, N., Kumar, V., Tyagi, B.: ‘Multi area AGC scheme using imperialist competition algorithm in restructured power system’, Appl. Soft Comput., 2016, 48, pp. 160168.
    5. 5)
      • 25. Barisal, A.K.: ‘Comparative performance analysis of teaching learning based optimization for automatic load frequency control of multi-source power systems’, Int. J. Electr. Power Energy Syst., 2015, 66, pp. 6777.
    6. 6)
      • 15. Padhy, S., Panda, S.: ‘A hybrid stochastic fractal search and pattern search technique based cascade PI–PD controller for automatic generation control of multi-source power systems in presence of plug in electric vehicles’, CAAI Trans. Intell. Technol., 2017, 2, (1), pp. 1225.
    7. 7)
      • 11. Mohanty, B., Panda, S., Hota, P.K.: ‘Controller parameters tuning of differential evolution algorithm and its application to load frequency control of multi-source power system’, Int. J. Electr. Power Energy Syst., 2014, 54, pp. 7785.
    8. 8)
      • 6. Nanda, J., Mangla, A., Suri, S.: ‘Some new findings on automatic generation control of an interconnected hydrothermal system with conventional controllers’, IEEE Trans. Energy Convers., 2006, 21, (1), pp. 187194.
    9. 9)
      • 17. Cao, J.Y., Cao, B.G.: ‘Design of fractional order controllers based on particle swarm optimization’. 2006 1st IEEE Conf. on Industrial Electronics and Applications, Singapore, 24 May 2006, pp. 16.
    10. 10)
      • 2. Nanda, J., Kothari, M.L., Satsang, P.S.: ‘Automatic generation control of an interconnected hydrothermal system in continuous and discrete modes considering generation rate constraints’, IEE Proc. D, Control Theory Appl., 1983, 130, (1), pp. 1727.
    11. 11)
      • 4. Abraham, R.J., Das, D., Patra, A.: ‘Effect of TCPS on oscillations in tie-power and area frequencies in an interconnected hydrothermal power system’, IET Gener. Transm. Distrib., 2007, 1, (4), pp. 632639.
    12. 12)
      • 27. Vilanova, R., Alfaro, V.M., Arrieta, O.: ‘Simple robust autotuning rules for 2-DOF PI controllers’, ISA Trans., 2012, 51, (1), pp. 3041.
    13. 13)
      • 19. Monje, C.A., Vinagre, V.M., Feliu, V., et al: ‘Tuning and auto-tuning of fractional order controllers for industry applications’, Control Eng. Pract., 2008, 16, (7), pp. 798812.
    14. 14)
      • 3. Abraham, R.J., Das, D., Patra, A.: ‘Automatic generation control of an interconnected hydrothermal power system considering superconducting magnetic energy storage’, Int. J. Electr. Power Energy Syst., 2007, 29, (8), pp. 571579.
    15. 15)
      • 5. Nanda, J., Mishra, S., Saikia, L.C.: ‘Maiden application of bacterial foraging-based optimization technique in multiarea automatic generation control’, IEEE Trans. Power Syst., 2009, 24, (2), pp. 602609.
    16. 16)
      • 29. Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., et al: ‘Salp swarm algorithm: a bio-inspired optimizer for engineering design problems’, Adv. Eng. Softw., 2017, 114, pp. 163191.
    17. 17)
      • 30. Tizhoosh, H.R.: ‘Opposition-based learning: a new scheme for machine intelligence’. Computational Intelligence for Modelling, Control and Automation, 2005 and Int. Conf. on Intelligent Agents, Web Technologies and Int. Conf. on Internet Commerce, Vienna, Austria, 28 November 2005, vol. 1, pp. 695701.
    18. 18)
      • 23. Martín, F., Monje, C.A., Moreno, L., et al: ‘DE-based tuning of PI(λ)D(μ) controllers’, ISA Trans., 2015, 59, pp. 398407.
    19. 19)
      • 24. Shah, P., Agashe, S.: ‘Review of fractional PID controller’, Mechatronics, 2016, 38, pp. 2941.
    20. 20)
      • 1. Kundur, P.: ‘Power system stability and control’ (McGraw-Hill, New York, 1994).
    21. 21)
      • 7. Saikia, L.C., Mishra, S., Sinha, N., et al: ‘Automatic generation control of a multi area hydrothermal system using reinforced learning neural network controller’, Int. J. Electr. Power Energy Syst., 2011, 33, (4), pp. 11011108.
    22. 22)
      • 8. Golpira, H., Bevrani, H.: ‘Application of GA optimization for automatic generation control design in an interconnected power system’, Energy Convers. Manage., 2011, 52, (5), pp. 22472255.
    23. 23)
      • 26. Arya, Y.: ‘AGC performance enrichment of multi-source hydrothermal gas power systems using new optimized FOFPID controller and redox flow batteries’, Energy, 2017, 127, pp. 704715.
    24. 24)
      • 22. Liu, L., Pan, F., Xue, D.: ‘Fractional-order optimal fuzzy control for network delay’, Optik, 2014, 125, (23), pp. 70207024.
    25. 25)
      • 20. Alomoush, M.I.: ‘Load frequency control and automatic generation control using fractional-order controllers’, Electr. Eng., 2010, 91, (7), pp. 357368.
    26. 26)
      • 9. Sahu, R.K., Panda, S., Rout, U.K.: ‘DE optimized parallel 2-DOF PID controller for load frequency control of power system with governor dead-band nonlinearity’, Int. J. Electr. Power Energy Syst., 2013, 49, pp. 1933.
    27. 27)
      • 28. Pan, Z., Dong, F., Zhao, J., et al: ‘Combined resonant controller and two-degree-of-freedom PID controller for PMSLM current harmonics suppression’, IEEE Trans. Ind. Electron., 2018, 65, (9), pp. 75587568.
    28. 28)
      • 18. Hamamci, S.E.: ‘Stabilization using fractional-order PI and PID controllers’, Nonlinear Dyn., 2008, 51, (1–2), pp. 329343.
    29. 29)
      • 13. Kumar, N.V., Ansari, M.M.: ‘A new design of dual mode type-II fuzzy logic load frequency controller for interconnected power systems with parallel AC–DC tie-lines and capacitor energy storage unit’, Int. J. Electr. Power Energy Syst., 2016, 82, pp. 579598.
    30. 30)
      • 12. Sahu, R.K., Panda, S., Padhan, S.: ‘A hybrid firefly algorithm and pattern search technique for automatic generation control of multi area power systems’, Int. J. Electr. Power Energy Syst., 2015, 64, pp. 923.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2019.0284
Loading

Related content

content/journals/10.1049/iet-gtd.2019.0284
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address