access icon free Voltage stability assessment algorithm to predict power system loadability margin

In this study, a novel voltage stability assessment algorithm (VSAA) is proposed, which can accurately detect the stability stiffness of power systems. To this purpose, VSAA uses only three measured samples of a bus voltage and the power flowing out of the bus to detect the maximum loadability limit of that bus. Although VSAA has a low computational burden and uses only locally measured data, it can consider the impact of small and/or large disturbances that change the Thevenin equivalent network (i.e. PV curve) seen from the target bus and is able to accurately assess the stability status. To examine the performance of VSAA, it was applied and tested on a 4-bus, IEEE 39-bus, Nordic32 and IEEE 33-bus distribution test systems using DIgSILENT PowerFactory software. The static and dynamic simulation results show the advantages of VSAA over other stability indices proposed in the literature and verify its efficiency and accuracy for online applications.

Inspec keywords: distribution networks; power system stability; load flow; power distribution control; power system simulation; IEEE standards; voltage control

Other keywords: Thevenin equivalent network; stability indices; Nordic32 test system; IEEE 33-bus distribution test systems; maximum loadability limit; DIgSILENT PowerFactory software; VSAA; IEEE 39-bus distribution test systems; 4-bus test system; static simulation; voltage stability assessment algorithm; stability status; bus voltage; power system loadability margin; stability stiffness detection; dynamic simulation

Subjects: Power system management, operation and economics; Control engineering computing; Power engineering computing; Control of electric power systems; Power system control; Distribution networks; Stability in control theory

References

    1. 1)
      • 25. Mohamed, A.A., Venkatesh, B.: ‘Line-wise power flow and voltage collapse’, IEEE Trans. Power Syst., 2018, 33, (4), pp. 37683778.
    2. 2)
      • 18. Jain, R., Darshan, B.: ‘Line stability indices and contingency screening by sensitivity factors based static voltage stability study’ (Springer, Singapore, 2019), pp. 129138.
    3. 3)
      • 2. Kundur, P., Paserba, J., Ajjarapu, V., et al: ‘Definition and classification of power system stability’, IEEE Trans. Power Syst., 2004, 19, (3), pp. 13871401.
    4. 4)
      • 45. Yari, S., Khoshkhoo, H.: ‘A comprehensive assessment to propose an improved line stability index’, Int. Trans. Electr. Energy Syst., 2019, 29, p. e2806. https://doi.org/10.1002/etep.2806.
    5. 5)
      • 12. Khoshkhoo, H., Shahrtash, S.M.: ‘On-line dynamic voltage instability prediction based on decision tree supported by a wide-area measurement system’, IET Gener. Transm. Distrib., 2012, 6, (11), pp. 11431152.
    6. 6)
      • 41. Corsi, S., Taranto, G.N.: ‘A real-time voltage instability identification algorithm based on local phasor measurements’, IEEE Trans. Power Syst., 2008, 23, (3), pp. 12711279.
    7. 7)
      • 30. Kamel, M., Karrar, A.A., Eltom, A.H.: ‘Development and application of a new voltage stability index for on-line monitoring and shedding’, IEEE Trans. Power Syst., 2017, 33, (2), pp. 12311241.
    8. 8)
      • 7. Guimarães, P., Fernandez, U., Ocariz, T., et al: ‘QV and PV curves as a planning tool of analysis’. Int. Conf. on Electric Utility Deregulation and Restructuring and Power Technologies, Weihai, People's Republic of China, 2011, pp. 16011606.
    9. 9)
      • 35. Aman, M., Jasmon, G., Mokhlis, H., et al: ‘Optimal placement and sizing of a DG based on a new power stability index and line losses’, Int. J. Electr. Power Energy Syst., 2012, 43, (1), pp. 12961304.
    10. 10)
      • 3. Eremia, M., Shahidehpour, M.: ‘Handbook of electrical power system dynamics: modeling, stability, and control’ (John Wiley & Sons, Hoboken, NJ, USA, 2013).
    11. 11)
      • 23. Rath, A., Ghatak, S.R., Goyal, P.: ‘Optimal allocation of distributed generation (DGs) and static VAR compensator (SVC) in a power system using revamp voltage stability indicator’. National Power Systems Conf. (NPSC), Kanpur, India, 2016, pp. 16.
    12. 12)
      • 19. Ratra, S., Tiwari, R., Niazi, K.: ‘Voltage stability assessment in power systems using line voltage stability index’, Comput. Electr. Eng., 2018, 70, pp. 199211.
    13. 13)
      • 31. Yang, C., Lai, G., Lee, C., et al: ‘Optimal setting of reactive compensation devices with an improved voltage stability index for voltage stability enhancement’, Int. J. Electr. Power Energy Syst., 2012, 37, (1), pp. 5057.
    14. 14)
      • 28. Pérez-Londoño, S., Rodríguez, L., Olivar, G.: ‘A simplified voltage stability index (SVSI)’, Int. J. Electr. Power Energy Syst., 2014, 63, pp. 806813.
    15. 15)
      • 10. Haque, M.: ‘On-line monitoring of maximum permissible loading of a power system within voltage stability limits’, IEE Proc., Gener. Transm. Distrib., 2003, 150, (1), pp. 107112.
    16. 16)
      • 21. Daram, S.B., Venkataramu, P.S., Nagaraj, M.S.: ‘Performance index based contingency ranking under line outage condition incorporating IPFC’. Int. Conf. on Electrical, Electronics, and Optimization Techniques (ICEEOT), Chennai, India, 2016, pp. 25892593.
    17. 17)
      • 37. El-Fergani, A., Abdelaziz, A.: ‘Capacitor placement for net saving maximization and system stability enhancement in distribution networks using artificial bee colony-based approach’, Int. J. Electr. Power Energy Syst., 2014, 54, pp. 235243.
    18. 18)
      • 9. Smon, I., Verbic, G., Gubina, F.: ‘Local voltage-stability index using Tellegen's theorem’, IEEE Trans. Power Syst., 2006, 21, (3), pp. 12671275.
    19. 19)
      • 46. Wang, Y.: ‘Voltage stability monitoring based on the concept of coupled single-port circuit’, IEEE Trans. Power Syst., 2011, 26, (4), pp. 21542163.
    20. 20)
      • 14. Xu, Y.: ‘Assessing short-term voltage stability of electric power systems by a hierarchical intelligent system’, IEEE Trans. Neural Netw. Learn. Syst., 2016, 27, (8), pp. 16861696.
    21. 21)
      • 40. Burchett, S.M.: ‘An optimal Thevenin equivalent estimation method and its application to the voltage stability analysis of a wind hub’, IEEE Trans. Power Syst., 2018, 33, (4), pp. 36443652.
    22. 22)
      • 33. Tiwari, D., Ghatak, S.: ‘Performance enhancement of distribution system using optimal allocation of distributed generation & DSTATCOM’. Int. Conf. on Innovative Mechanisms for Industry Applications (ICIMIA), Bengaluru, India, 2017, pp. 533538.
    23. 23)
      • 22. Samuel, I.A., Katende, J., Awosope, C.O.A., et al: ‘Prediction of voltage collapse in electrical power system networks using a new voltage stability index’, Int. J. Appl. Eng. Res., 2017, 12, (2), pp. 190199.
    24. 24)
      • 26. Furukakoi, M., Adewuyi, O.B., Danish, M.S.S., et al: ‘Critical boundary index (CBI) based on active and reactive power deviations’, Int. J. Electr. Power Energy Syst., 2018, 100, pp. 5057.
    25. 25)
      • 43. Van-Cutsem, T., Vournas, C.: ‘Voltage stability of electric power system’ (Springer, New York, USA, 1998).
    26. 26)
      • 17. Modarresi, J., Gholipour, E., Khodabakhshian, A.: ‘A comprehensive review of the voltage stability indices’, Renew. Sust. Energy Rev., 2016, 63, pp. 112.
    27. 27)
      • 32. Moghavvemi, M., Faruque, M.: ‘Technique for assessment of voltage stability in ill-conditioned radial distribution network’, IEEE Power Eng. Rev., 2001, 21, (1), pp. 5860.
    28. 28)
      • 11. Cui, B., Wang, Z.: ‘Voltage stability assessment based on improved coupled single-port method’, IET Gener. Transm. Distrib., 2017, 11, (10), pp. 27032711.
    29. 29)
      • 47. Arif, W., Arbab, N.: ‘Analysis and optimization of IEEE 33 bus radial distributed system using optimization algorithm’, J. Emerg. Trends Appl., 2016, 1, pp. 25184059.
    30. 30)
      • 38. Wiszniewski, A.: ‘New criteria of voltage stability margin for the purpose of load shedding’, IEEE Trans. Power Deliv., 2007, 22, (3), pp. 13671371.
    31. 31)
      • 42. Ajjarapu, V.: ‘Computational techniques for voltage stability assessment and control’ (Springer Science & Business Media, Ames, USA, 2007).
    32. 32)
      • 1. Kundur, P.: ‘Power system stability and control’ (McGraw-Hill, New York, USA, 1994).
    33. 33)
      • 27. Philippe, W.P.J., Eftekharnejad, S., Ghosh, P.K.: ‘Development of a new voltage stability index and its implementation considering voltage measurement uncertainty’, IET Gener. Transm. Distrib., 2019, 13, (18), pp. 40114020.
    34. 34)
      • 16. Zhang, Y., Xu, Y., Yang Dong, Z., et al: ‘A hierarchical self-adaptive data-analytics method for real time power system short-term voltage stability assessment’, IEEE Trans. Power Syst., 2019, 15, (1), pp. 7484.
    35. 35)
      • 8. Almeida, A., De Lorenci, E., Leme, R., et al: ‘Probabilistic voltage stability assessment considering renewable sources with the help of the PV and QV curves’, IET Renew. Power Gener., 2013, 7, (5), pp. 521530.
    36. 36)
      • 24. Chuang, S.-J., Hong, C.-M., Chen, C.-H.: ‘Improvement of integrated transmission line transfer index for power system voltage stability’, Int. J. Electr. Power Energy Syst., 2016, 78, pp. 830836.
    37. 37)
      • 6. Gao, B., Morison, G., Kundur, P.: ‘Voltage stability evaluation using modal analysis’, IEEE Trans. Power Syst., 1992, 7, (4), pp. 15291542.
    38. 38)
      • 39. Ali, A., Abdalla, A., Ishat, R.: ‘Effect of DG optimizing on overload transmission line stability’, Indian J. Sci. Technol., 2017, 10, (10).
    39. 39)
      • 15. Parizad, A., Khoshkhoo, H., Dehgan, S., et al: ‘An intelligent load and generation shedding procedure in an islanded network using a smart power management system’. Int. Conf. on Smart Grid Conf. (SGC), Tehran, Iran, 2017.
    40. 40)
      • 36. Parizad, A., Khazali, A., Kalantar, M.: ‘Optimal placement of distributed generation with sensitivity factors considering voltage stability and losses indices’. Int. Conf. on Electrical Engineering (ICEE), Tehran, Iran, 2010, pp. 848855.
    41. 41)
      • 20. Ancheng, X., Ruihuang, L., Mingkai, L., et al: ‘On-line voltage stability index based on the voltage equation of transmission lines’, IET Gener. Transm. Distrib., 2016, 10, (14), pp. 34413448.
    42. 42)
      • 5. Konar, S., Chatterjee, D., Patra, S.: ‘Sensitivity-based index for assessment of dynamic voltage stability of power systems’, IET Gener. Transm. Distrib., 2015, 9, (7), pp. 677685.
    43. 43)
      • 44. Musirin, I., Rahman, T.: ‘Novel fast voltage stability index (FVSI) for voltage stability analysis in power transmission system’. Int. Conf. Research and Development SCOReD, Perak, Malaysia, 2002, pp. 265268.
    44. 44)
      • 13. Khoshkhoo, H., Shahrtash, S.M.: ‘Fast online dynamic voltage instability prediction and voltage stability classification’, IET Gener. Transm. Distrib., 2014, 8, (5), pp. 957965.
    45. 45)
      • 34. Jing-jing, T., Zhong-dong, Y.: ‘An evaluation index of voltage stability of distribution network considering DG’. Int. Conf. on Sustainable and Renewable Energy Engineering (ICSREE), Hiroshima, Japan, 2017, pp. 125128.
    46. 46)
      • 4. Glavic, M., Van Cutsem, T.: ‘Wide-area detection of voltage instability from synchronized phasor measurements. Part I: principle’, IEEE Trans. Power Syst., 2009, 24, (3), pp. 14081416.
    47. 47)
      • 29. Balamourougan, V., Sidhu, T., Sachdev, M.: ‘Technique for online prediction of voltage collapse’, IEE Proc., Gener. Transm. Distrib., 2004, 151, (4), pp. 453460.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2019.0230
Loading

Related content

content/journals/10.1049/iet-gtd.2019.0230
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading