Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Enhancing the performance of DFIG variable speed wind turbine using a parallel integrated capacitor and modified modulated braking resistor

Wind energy has a dilute, unpredicted nature; hence, it creates a challenge for effective and well managed operation of wind turbines connected to the grid network. There is a mandatory requirement for wind turbines to fulfil standard grid codes for stability control. In this study, a new scheme consisting of a parallel connected capacitor with the DC-link scheme of the doubly fed induction generator (DFIG) wind turbine is proposed. Scenarios of integrating different sizes of the parallel capacitor at the grid side converter of the DFIG were investigated, in order to know the optimum size for the better transient performance of the wind generator. For effective comparative study, the same constant wind speed was used for the considered scenarios in the investigation of the wind generator transient performance. The presented results in power system computer design and electromagnetic transient including DC show that the proposed parallel capacitor based DC-link scheme power converter improves the grid voltage response and the variables of the wind generator during a severe grid fault condition. Furthermore, a proposed modulated series dynamic braking resistor (MSDBR) was used to improve the overall performance of the capacitor scheme. The results of the proposed MSDBR were compared to the traditional scheme.

References

    1. 1)
      • 46. Kong, X., Xianggen, Z.Z., Wen, M.: ‘Study of fault current characteristics of the DFIG considering dynamic response of the RSC’, IEEE Trans. Energy Convers., 2014, 2, (2), pp. 278287.
    2. 2)
      • 30. Park, W., Sung, B.C., Park, J.: ‘The effect of SFCL on electric power grid with wind turbine generation system’, IEEE Trans. Appl. Supercond., 2010, 20, (3), pp. 11771181.
    3. 3)
      • 4. Hu, J., Li, Y., Zhu, J.: ‘Multi-objective model predictive control of doubly-fed induction generators for wind energy conversion’, IET Gener. Transm. Distrib., 2019, 13, (1), pp. 2129, DOI: 10.1049/iet-gtd.2018.5172.
    4. 4)
      • 43. Power system computer aided design user's guide by’, Manitoba Hydro International Ltd., Winnipeg, MB, Canada, 2010.
    5. 5)
      • 42. Uddin, W., Zeb, K., Tanoli, A., et al: ‘Hardware-based hybrid scheme to improve the fault ride through capability of doubly fed induction generator under symmetrical and asymmetrical faults’, IET Gener. Trans. Distrib., 2017, 12, (1), pp. 200206.
    6. 6)
      • 22. Matas, J., Castilla, M., Guerrero, J.M., et al: ‘Feedback linearization of direct-drive synchronous wind-turbines via a sliding mode approach’, IEEE Trans. Power Electron., 2008, 23, (3), pp. 10931103.
    7. 7)
      • 33. Okedu, K.E., Muyeen, S.M, Takahashi, R., et al: ‘Improvement of fault ride through capability of wind farm using DFIG considering SDBR’. 14th European Conf. of Power Electronics EPE, Birmingham, UK, August 2011, Paper no. 306.
    8. 8)
      • 49. Huang, P., El Moursi, M.S., Hasen, S.A.: ‘Novel fault ride through scheme and control strategy for double fed induction generator based wind turbine’, IEEE Trans. Energy Convers., 2015, 30, (2), pp. 635645.
    9. 9)
      • 37. Eisa, S.A.: ‘Modeling dynamics and control of type-3 DFIG wind turbines: stability, Q droop function, control limits and extreme scenarios simulation’, Electric Power Syst. Res., 2019, 166, pp. 2942, DOI: 10.1016/j.epsr.2018.09.018.
    10. 10)
      • 36. Naderi, S.B., Negnevitsky, M., Muttaqi, K.M.: ‘A modified DC chopper for limiting the fault current and controlling the DC link voltage to enhance fault ride through capability of doubly fed induction generator-based wind turbine’. IEEE Ind. Appl. Society Annual Meeting, Cincinnati, OH, USA, 1–5 Oct. 2017, pp. 18, DOI: 10.1109/IAS.2018101743.
    11. 11)
      • 3. Yang, J., Chen, Y., Hsu, Y.: ‘Small-signal stability analysis and particle swarm optimisation self-tuning frequency control for an islanding system with DFIG wind farm’, IET Gener. Transm. Distrib., 2019, 13, (4), pp. 563574, DOI: 10.1049/iet-gtd.2018.6101.
    12. 12)
      • 18. Hossain, M.M., Ali, M.H.: ‘Transient stability improvement of doubly-fed induction generator based variable speed wind generator using DC resistive fault current limiter’, IET Renew. Power Gener., 2016, 10, (2), pp. 150157.
    13. 13)
      • 5. Tsili, M., Papathanassiou, S.: ‘A review of grid code technical requirements for wind farms’, IET Renew. Power Gener., 2009, 3, (3), pp. 308332.
    14. 14)
      • 45. Zubia, I., Ostolaza, J.X., Susperrgui, A., et al: ‘Multi-machine transient modeling of wind farms: an essential approach to the study of fault conditions in the distribution network’, Appl. Energy, 2012, 89, (1), pp. 421429.
    15. 15)
      • 39. Leon, A.E., Solsona, J.A.: ‘Sub-synchronous interaction damping control for DFIG wind turbines’, IEEE Trans. Power Syst., 2015, 30, pp. 419428.
    16. 16)
      • 41. Blaabjerg, F., Lonel, D.M.: ‘Power electronics and control for large wind turbines and wind farms’. in ‘Renewable energy devices and system with simulation in MATLAB and ANSYS’ (CRC Press Taylor & Francis Group, Boca Raton, FL, USA, 2017, 1st edn.), pp. 194195. ISBN 9781498765831.
    17. 17)
      • 16. Tohidi, S., Oraee, H., Zolghadri, M.R., et al: ‘Analysis and enhancement of low-voltage ride-through capability of brushless doubly-fed induction generator’, IEEE Trans. Ind. Electron., 2013, 60, (3), pp. 11461155.
    18. 18)
      • 17. Mishra, A., Singh, M., Srivastava, A., et al: ‘Suppression of harmonics in DFIG based WECS using passive LCL filter’. Int. Conf. on Power Energy, Environment and Intelligent Control (PEEIC), Greater Noida, India, 13–14 April 2018, 18512499, DOI: 10.1109/PEEIC.2018.8665554.
    19. 19)
      • 8. Qiao, W., Zhou, W., Aller, J.M., et al: ‘Wind speed estimation based sensorless output maximization control for a wind turbine driven a DFIG’, IEEE Trans. Power Electron., 2008, 23, (3), pp. 11561169.
    20. 20)
      • 1. Hazari, M., Mannan, M., Muyeen, S., et al: ‘Stability augmentation of a grid-connected wind farm by fuzzy-logic-controlled DFIG-based wind turbines’, Appl. Sci., 2018, 8, (1), pp. 20.
    21. 21)
      • 29. Okedu, K.E.: ‘Enhancing DFIG wind turbine during three-phase fault using parallel interleaved converters and dynamic resistor’, IET Renew. Power Gener., 2016, 10, (6), pp. 12111219.
    22. 22)
      • 15. Kasem, A.H., El-Saadany, E.F., El-Tamaly, H.H, et al: ‘An improved fault ride-through strategy for doubly-fed induction generator-based wind turbines’, IET Renew. Power Gener., 2008, 2, (4), pp. 201214.
    23. 23)
      • 47. Wessels, C., Gebhardt, F., Fuchs, F.W.: ‘Fault ride-through of a DFIG wind turbine using a dynamic voltage restorer during symmetrical and asymmetrical grid faults’, IEEE Trans. Power Electron., 2011, 26, (3), pp. 807815.
    24. 24)
      • 50. Ling, Y., Cai, X.: ‘Electrical power and energy systems rotor current dynamics of doubly fed induction generators during grid voltage dip and rise’, Int. J. Electr. Power Energy Syst., 2013, 44, (1), pp. 1724.
    25. 25)
      • 19. Tourou, P., Sourkounis, C.: ‘Investigation of fault ride-through behavior of DFIG-based wind energy conversion systems’. 2014 IEEE Int. Energy Conf. (ENERGYCON), Dubrovnik, Croatia, 2014, pp. 8793.
    26. 26)
      • 13. Hu, J., Xu, H., He, Y.: ‘Coordinated control of DFIG's RSC and GSC under generalized unbalanced and distorted grid voltage conditions’, IEEE Trans. Ind. Electron., 2013, 60, (7), pp. 28082819.
    27. 27)
      • 24. Sarrias-Mena, R., Fernández-Ramírez, L.M, García-Vázquez, C.A., et al: ‘Dynamic evaluation of two configurations for a hybrid DFIG-based wind turbine integrating battery energy storage system’, Wind Energy, 2015, 18, (9), pp. 15611577.
    28. 28)
      • 26. Causebrook, A., Atkinson, D.J, Jack, A.G.: ‘Fault ride through of large wind farms using series dynamic braking resistors’, IEEE Trans. Power Syst., 2007, 22, (3), pp. 966975.
    29. 29)
      • 44. Calderon Zavala, G., Mina Antonio, J.D., Rosas Caro, J.C., et al: ‘Simulation and comparative analysis of DFIG-based WECS using stator voltage and stator flux reference frames’, IEEE Latin Am. Trans., 2017, 15, (6), pp. 10521059.
    30. 30)
      • 35. Justo, J.J., Bansal, R.C.: ‘Parallel R-L configuration crowbar with series R-L circuit protection for LVRT strategy of DFIG under transient state’, Electr. Power Syst. Res., 2018, 154, pp. 299310.
    31. 31)
      • 10. Okedu, K.E., Muyeen, S.M., Takahashi, R., et al: ‘Wind farm stabilization by using DFIG with current controlled voltage source converters taking grid codes into consideration’, IEE J. Trans. Power Energy, 2012, 132, (3), pp. 251259.
    32. 32)
      • 27. Yang, J., Fletcher, J.E., O'Reilly, J.: ‘A series dynamic resistor based converter protection schemes for doubly fed induction generator during various fault conditions’, IEEE Trans. Energy Convers., 2010, 25, (2), pp. 422432.
    33. 33)
      • 21. Sahoo, S.S, Roy, A., Chatterjee, K.: ‘Fault ride through enhancement of wind energy conversion system adopting a mechanical controller’. National Power Systems Conf. (NPSC), Bhubaneswar, India, 2016, pp. 15.
    34. 34)
      • 48. Rini, A.A., Kaliannan, P., Subramaniam, U., et al: ‘Review on FRT solutions for improving transient stability in DFIG-WTs’, IET Renewable Power Generation, 2018, 12, (15), pp. 17861799, DOI: 10.1049/iet-rpg.2018.5249.
    35. 35)
      • 31. Yan, X., Venkataramanan, G., Wang, Y.: ‘Grid fault tolerant operation of DFIG wind turbine generator using a passive resistance network’. Proc. IEEE-ECCE (Energy Conversion Congress and Exposition), San Jose, CA, USA, 2009.
    36. 36)
      • 7. Artigao, E., Sapena-Bano, A., Honrubia-Escribano, A., et al: ‘Long-term operational data analysis of an in-service wind turbine DFIG’, IEEE. Access., 2019, 7, pp. 1789617906.
    37. 37)
      • 12. Nian, H., Song, Y.: ‘Direct power control of doubly fed induction generator under distorted grid voltage’, IEEE Trans. Power Electron., 2014, 29, (2), pp. 894905.
    38. 38)
      • 34. Huchel, L., El Moursi, M.S., Zeineldin, H.H.: ‘A parallel capacitor control strategy for enhanced FRT capability of DFIG’, IEEE Trans. Sustain. Energy, 2015, 6, (2), pp. 303312.
    39. 39)
      • 28. Okedu, K.E., Muyeen, S.M., Takahashi, R., et al: ‘Wind farms fault ride through using DFIG with new protection scheme’, IEEE Trans. Sustain. Energy, 2012, 3, (2), pp. 242254.
    40. 40)
      • 11. Zheng, Z., Huang, C., Yang, R., et al: ‘A low voltage ride through scheme for DFIG-based wind farm with SFCL and RSC control’, IEEE Trans. Appl. Supercond., 2019, 29, (2), 5601005, pp. 15.
    41. 41)
      • 38. Rehman, A.U., Chen, Y., Zhao, Y., et al: ‘Detection of rotor inter-turn short circuit fault in doubly-fed induction generator using FEM simulation’. IEEE Int. Conf. on Dielectrics (ICD), Budapest, Hungary, 1–6 2018, DOI: 10.1109/ICD.2018.8514641.
    42. 42)
      • 14. Geng, H., Liu, C., Yang, G.: ‘LVRT capability of DFIG-based WECS under asymmetrical grid fault condition’, IEEE Trans. Ind. Electron., 2013, 60, (6), pp. 24952509.
    43. 43)
      • 6. Karakasis, N., Tsioumas, E., Jabbour, N., et al: ‘Optimal efficiency control in a wind system with doubly fed induction generator’, IEEE Trans. Power Electron., 2019, 34, (1), pp. 356368.
    44. 44)
      • 2. Khan, I., Zeb, K., Din, W., et al: ‘Dynamic modeling and robust controllers design for doubly fed induction generator-based wind turbines under unbalanced grid fault conditions’, Energies, 2019, 12, (454), pp. 123.
    45. 45)
      • 9. Abad, G., Rodriguez, M.A, Iwanski, G., et al: ‘Direct power control of doubly-fed-induction-generator-based wind turbine under unbalanced grid voltage’, IEEE Trans. Power Electron., 2010, 25, (2), pp. 442452.
    46. 46)
      • 40. Chowdhury, M.A., Shafiullah, G.M.: ‘SSR mitigation of series compensated DFIG wind farms by nonlinear damping controller using partial feedback linearization’, IEEE Trans. Power Syst., 2018, 33, pp. 25282538.
    47. 47)
      • 25. Sarrias-Mena, R., Fernández-Ramírez, L., García-Vázquez, C.A., et al: ‘Improving grid integration of wind turbines by using secondary batteries’, Renew. Sustain. Energy Rev., 2014, 34, pp. 194207.
    48. 48)
      • 20. Okedu, K.E, Muyeen, S.M, Takahashi, R., et al: ‘Comparative study between two protection schemes for DFIG-based wind generator’. Int. Conf. on Electrical Machines and Systems (ICEMS), Seoul, Republic of Korea, 2010, pp. 6267.
    49. 49)
      • 32. Petersson, A., Lundberg, S., Thiringer, T., ‘A DFIG wind turbine ride through system influence on energy production’, Wind Energy J., 2005, 8, pp. 251263.
    50. 50)
      • 23. Lima, F.K.A, Luna, A., Rodriguez, P., et al: ‘Rotor voltage dynamics in the doubly-fed induction generator during grid faults’, IEEE Trans. Power Electron., 2010, 25, (1), pp. 118130.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2019.0206
Loading

Related content

content/journals/10.1049/iet-gtd.2019.0206
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address