access icon free Isoperimetric clustering-based network partitioning algorithm for voltage–apparent power coupled areas

This work proposes a novel relative electrical distance measure that provides information of coupling between voltage and apparent power between two buses in power systems. Relative electrical distance measure is derived from the bus admittance matrix which can be obtained in real time using Phasor Measurement Units. Based on the relative electrical distance measure, in this work, an isoperimetric clustering based algorithm for partitioning power systems into voltage–apparent power coupled areas is proposed. The advantage of the partitioning algorithm proposed in this work is that large networks can be represented as a weighted graph with number of vertices equal to number of generators in the system which is much lesser than the size of system, thereby reducing the computational effort for partitioning. Isoperimetric clustering technique along with k-means is then applied to the graph to obtain voltage–apparent power coupled areas. Simulations carried out on New England 39-bus system and IEEE 118-bus system demonstrate the effectiveness of the proposed methodology for partitioning the system into voltage–apparent power coupled areas, subject to changes in the operating condition of the system. The quality of clustering is analysed and compared with Cheeger inequality bounds, which ensures that power system is well partitioned.

Inspec keywords: matrix algebra; distance measurement; phase measurement; power system measurement; phasor measurement; power system security; graph theory; pattern clustering; power system simulation; power system stability; power systems; load flow

Other keywords: voltage–apparent power coupled areas; power system; isoperimetric clustering-based network partitioning algorithm; novel relative electrical distance measure; partitioning power systems; apparent power requirements; isoperimetric clustering-based algorithm

Subjects: Phase and gain measurement; Power system control; Power engineering computing; Combinatorial mathematics; Optimisation techniques; Power system measurement and metering; Power system management, operation and economics; Combinatorial mathematics

References

    1. 1)
      • 16. Jiang, T., Bai, L., Yuan, H., et al: ‘QV interaction evaluation and pilot voltage-reactive power coupling area partitioning in bulk power systems’, IET Sci. Meas. Technol., 2017, 11, (3), pp. 270278.
    2. 2)
      • 9. Schlueter, R.A., Liu, S.-Z., Ben-Kilani, K.: ‘Justification of the voltage stability security assessment and diagnostic procedure using a bifurcation subsystem method’, IEEE Trans. Power Syst., 2000, 15, (3), pp. 11051111.
    3. 3)
      • 29. Chung, F.R.K., Graham, F.C.: ‘Spectral graph theory’, Am. Math. Soc., 1997, (92).
    4. 4)
      • 14. Su, H.-Y., Liu, C.-W.: ‘Estimating the voltage stability margin using PMU measurements’, IEEE Trans. Power Syst., 2016, 31, (4), pp. 32213229.
    5. 5)
      • 30. Rege, M., Dong, M., Fotouhi, F.: ‘Bipartite isoperimetric graph partitioning for data co-clustering’, Data Min. Knowl. Discov., 2008, 16, (3), pp. 276312.
    6. 6)
      • 22. Saadeh, M., Alsarray, M., McCann, R.: ‘Estimation of the bus admittance matrix for transmission systems from synchrophasor data’. IEEE/PES Transmission and Distribution Conf. and Exposition (T&D), Dallas, TX, USA, 2016.
    7. 7)
      • 6. Morison, K., Wang, X., Moshref, A., et al: ‘Identification of voltage control areas and reactive power reserve; an advancement in on-line voltage security assessment’. 2008 IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA, 2008.
    8. 8)
      • 33. Tyuryukanov, I., Popov, M., van der Meijden, M.A.M.M., et al: ‘Discovering clusters in power networks from orthogonal structure of spectral embedding’, IEEE Trans. Power Syst., 2018, 33, (6), pp. 64416451.
    9. 9)
      • 24. Beineke, L.W., Wilson, R.J., Cameron, P.J.: ‘Topics in algebraic graph theory’, Vol. 102, (Cambridge University Press, Cambridge, UK, 2004).
    10. 10)
      • 19. Joskow, P.L.: ‘Electricity agenda items for the new FERC’, Electr. J., 1993, 6, (5), pp. 1828.
    11. 11)
      • 28. Grady, L., Schwartz, E.L.: ‘Isoperimetric partitioning: a new algorithm for graph partitioning’, SIAM J. Sci. Comput., 2006, 27, (6), pp. 18441866.
    12. 12)
      • 31. Kodinariya, T.M., Makwana, P.R.: ‘Review on determining number of cluster in K-means clustering’, Int. J., 2013, 1, (6), pp. 9095.
    13. 13)
      • 34. Christie, R.: ‘Power system test case archiveAvailable at https://labs.ece.uw.edu/pstca/pf118/pgtca118bus.htm, May 1993.
    14. 14)
      • 5. Kargarian, A., Raoofat, M., Mohammadi, M.: ‘Reactive power market management considering voltage control area reserve and system security’, Appl. Energy, 2011, 88, (11), pp. 38323840.
    15. 15)
      • 21. Grady, L., Schwartz, E.L.: ‘Isoperimetric graph partitioning for image segmentation’, IEEE Trans. Pattern Anal. Mach. Intell., 2006, 28, (3), pp. 469475.
    16. 16)
      • 11. Liao, X.J., Zheng, W., Li, H.G., et al: ‘A novel voltage control area partitioning algorithm based on energy sensitivity matrix and multi-threshold search route’. 2011 Asia-Pacific Power and Energy Engineering Conf. (APPEEC), Wuhan, People's Republic of China, 2011.
    17. 17)
      • 17. Bai, L., Jiang, T., Li, X., et al: ‘Partitioning voltage stability critical injection regions via electrical network response and dynamic relative gain’. Power and Energy Society General Meeting (PESGM), 2016, Boston, MA, USA, 2016.
    18. 18)
      • 32. Pai, A.: ‘Energy function analysis for power system stability’ (Springer, USA, 1989).
    19. 19)
      • 25. Korte, B., Vygen, J., et al: ‘Combinatorial optimization’, Vol. 2, (Springer, Heidelberg, 2012).
    20. 20)
      • 23. Visakha, K., Thukaram, D., Jenkins, L.: ‘Transmission charges of power contracts based on relative electrical distances in open access’, Electr. Power Syst. Res., 2004, 70, (2), pp. 153161.
    21. 21)
      • 1. Ajjarapu, V., Christy, C.: ‘The continuation power flow: a tool for steady state voltage stability analysis’, IEEE Trans. Power Syst., 1992, 7, (1), pp. 416423.
    22. 22)
      • 8. Mehrjerdi, H., Lefebvre, S., Saad, M., et al: ‘A decentralized control of partitioned power networks for voltage regulation and prevention against disturbance propagation’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 14611469.
    23. 23)
      • 12. Bahmanifirouzi, B., Farjah, E., Niknam, T., et al: ‘A new hybrid HBMO-SFLA algorithm for multi-objective distribution feeder reconfiguration problem considering distributed generator units’, Iranian J. Sci. Technol. Trans. Electr. Eng., 2012, 36, (E1), p. 51.
    24. 24)
      • 20. Zhong, J., Nobile, E., Bose, A., et al: ‘Localized reactive power markets using the concept of voltage control areas’, IEEE Trans. Power Syst., 2004, 19, (3), pp. 15551561.
    25. 25)
      • 2. Chen, Y.L.: ‘Weak bus oriented reactive power planning for system security’, IEE Proc., Gener. Transm. Distrib., 1996, 143, (6), pp. 541545.
    26. 26)
      • 4. Song, S.H., Lee, H.C., Yoon, Y.T., et al: ‘Cluster design compatible with market for effective reactive power management’. Power Engineering Society General Meeting, 2006 IEEE. IEEE, Montreal, QC, Canada, 2006.
    27. 27)
      • 10. Daher, N.A., Mougharbel, I, Saad, M, et al: ‘Comparative study of partitioning methods used for secondary voltage control in distributed power networks’. 2013 IEEE Int. Conf. on Smart Energy Grid Engineering (SEGE), Oshawa, ON, Canada, 2013.
    28. 28)
      • 3. Parida, S.K., Singh, S.N., Srivastava, S.C.: ‘Voltage security constrained localized reactive power market’. Power India Conf., 2006 IEEE, New Delhi, India, 2006 Apr 10, p. 6.
    29. 29)
      • 15. Jiang, T., Li, F., Bai, L., et al: ‘Identification of voltage stability critical injection region in bulk power systems based on the relative gain of voltage coupling’, IET Gener. Transm. Distrib., 2016, 10, (7), pp. 14951503.
    30. 30)
      • 27. Jiang, T., Bai, L., Jia, H., et al: ‘Spectral clustering-based partitioning of volt/VAR control areas in bulk power systems’, IET Gener. Transm. Distrib., 2017, 11, (5), pp. 11261133.
    31. 31)
      • 7. Villa, W.M., Rueda, J.L., Torres, S., et al: ‘Identification of voltage control areas in power systems with large scale wind power integration’. 2012 Sixth IEEE/PES Transmission and Distribution: Latin America Conf. and Exposition (T&D-LA), Montevideo, Uruguay, 2012.
    32. 32)
      • 13. Razibul Islam, S.K., Muttaqi, K.M., Sutanto, D.: ‘A decentralized multiagent-based voltage control for catastrophic disturbances in a power system’, IEEE Trans. Ind. Appl., 2015, 51, (2), pp. 12011214.
    33. 33)
      • 26. Sánchez-García, R.J., Fennelly, M., Norris, S., et al: ‘Hierarchical spectral clustering of power grids’, IEEE Trans. Power Syst., 2014, 29, (5), pp. 22292237.
    34. 34)
      • 18. Cuffe, P., Keane, A.: ‘Visualizing the electrical structure of power systems’, IEEE Syst. J., 2017, 11, (3), pp. 18101821.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2019.0115
Loading

Related content

content/journals/10.1049/iet-gtd.2019.0115
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading