access icon free Hierarchical voltage imbalance control for single-/three-phase hybrid multimicrogrid

With the rapid development of distributed generation (DG), microgrids and multimicrogrids (MMGs) appear at the end of distribution networks. For the islanded operation of a single-/three-phase hybrid MMG, a hierarchical coordinated control scheme is proposed in this study that includes primary and secondary levels. A compound control strategy based on quasi-proportional resonant and robust control is proposed for the primary voltage/frequency control to suppress voltage fluctuations caused by sudden changes in load power and DG output power; a coordinated strategy regarding tie-line power at the point of common coupling (PCC) is proposed for the secondary control to simultaneously improve voltage imbalance at the terminal of the master power supply, PCC, and load terminal. The proposed hierarchical coordinated control scheme is compared with conventional proportional–integral control and a control method based on the PCC to verify its performance. Test studies verify the superior robustness and voltage imbalance control performance of the proposed control scheme in coping with a sudden change in power and unbalanced loads.

Inspec keywords: voltage control; frequency control; power distribution control; distributed power generation; power generation control; robust control

Other keywords: secondary levels; robust control; quasiproportional resonant; coordinated strategy; primary levels; load power; distribution networks; voltage control; three-phase hybrid multimicrogrid; secondary control; hierarchical voltage imbalance control; compound control strategy; PCC; control method; master power supply; DG output power; point of common coupling; voltage fluctuation suppression; single-phase hybrid multimicrogrid; frequency control; hierarchical coordinated control scheme; tie-line power

Subjects: Voltage control; Control of electric power systems; Frequency control; Power system control; Distributed power generation; Stability in control theory; Distribution networks

References

    1. 1)
      • 29. Wang, C., Yang, P., Ye, C., et al: ‘Voltage control strategy for three/single phase hybrid multimicrogrid’, IEEE Trans. Energy Convers., 2016, 31, (4), pp. 14981509.
    2. 2)
      • 25. Kargarian, A., Rahmani, M.: ‘Multi-microgrid energy systems operation incorporating distribution-interline power flow controller’, Electr. Power Syst. Res., 2015, 129, pp. 208216.
    3. 3)
      • 35. Kim, H., Sul, S.: ‘A novel filter design for output LC filters of PWM inverters’, J. Power Electron., 2011, 11, (1), pp. 7481.
    4. 4)
      • 14. Yun, W.L., Vilathgamuwa, D.M., Poh, C.L.: ‘A grid-interfacing power quality compensator for three-phase three-wire microgrid applications’, IEEE Trans. Power Electron., 2006, 21, (4), pp. 10211031.
    5. 5)
      • 4. Lei, S., Hou, Y., Qiu, F., et al: ‘Identification of critical switches for integrating renewable distributed generation by dynamic network reconfiguration’, IEEE Trans. Sustain. Energy, 2018, 9, (1), pp. 420432.
    6. 6)
      • 19. Hamzeh, M., Karimi, H., Mokhtari, H.: ‘Harmonic and negative-sequence current control in an islanded multi-bus MV microgrid’, IEEE Trans. Smart Grid, 2014, 5, (1), pp. 167176.
    7. 7)
      • 21. Savaghebi, M., Jalilian, A., Vasquez, J.C., et al: ‘Secondary control for voltage quality enhancement in microgrids’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 18931902.
    8. 8)
      • 32. Wang, T., Nian, H., Zhu, Z., et al: ‘Flexible compensation strategy for voltage source converter under unbalanced and harmonic condition based on a hybrid virtual impedance method’, IEEE Trans. Power Electron., 2018, 33, (9), pp. 76567673.
    9. 9)
      • 13. Li, Y., Vilathgamuwa, D.M., Loh, P.C.: ‘Microgrid power quality enhancement using a three-phase four-wire grid-interfacing compensator’, IEEE Trans. Ind. Appl., 2005, 41, (6), pp. 17071719.
    10. 10)
      • 15. Cheng, P., Chen, C., Lee, T., et al: ‘A cooperative imbalance compensation method for distributed-generation interface converters’, IEEE Trans. Ind. Appl., 2009, 45, (2), pp. 805815.
    11. 11)
      • 9. John, T., Lam, S.P.: ‘Voltage and frequency control during microgrid islanding in a multi-area multi-microgrid system’, IET Gener. Transm. Distrib., 2017, 11, (6), pp. 15021512.
    12. 12)
      • 28. Babazadeh, M., Karimi, H.: ‘A robust two-degree-of-freedom control strategy for an islanded microgrid’, IEEE Trans. Power Deliv., 2013, 28, (3), pp. 13391347.
    13. 13)
      • 34. Lu, X., Sun, K., Guerrero, J. M., et al: ‘State-of-charge balance using adaptive droop control for distributed energy storage systems in DC microgrid applications’, IEEE Trans. Ind. Electron., 2014, 61, (6), pp. 28042815.
    14. 14)
      • 1. Cheng, S., Chen, M.: ‘Multi-objective reactive power optimization strategy for distribution system with penetration of distributed generation’, Int. J. Electr. Power, 2014, 62, pp. 221228.
    15. 15)
      • 2. Xi, L., Chen, J., Huang, Y.: ‘Smart generation control based on multi-agent reinforcement learning with the idea of the time tunnel’, Energy, 2018, 153, pp. 977987.
    16. 16)
      • 20. Savaghebi, M., Jalilian, A., Vasquez, J.C., et al: ‘Secondary control scheme for voltage unbalance compensation in an islanded droop-controlled microgrid’, IEEE Trans. Smart Grid, 2012, 3, (2), pp. 797807.
    17. 17)
      • 8. Hu, X., Liu, T.: ‘Co-optimisation for distribution networks with multi-microgrids based on a two-stage optimisation model with dynamic electricity pricing’, IET Gener. Transm. Distrib., 2017, 11, (9), pp. 22512259.
    18. 18)
      • 18. Savaghebi, M., Jalilian, A., Vasquez, J.C., et al: ‘Autonomous voltage unbalance compensation in an islanded droop-controlled microgrid’, IEEE Trans. Ind. Electron., 2013, 60, (4), pp. 13901402.
    19. 19)
      • 24. Vasiljevska, J., Peças Lopes, J.A., Matos, M.A.: ‘Integrated micro-generation, load and energy storage control functionality under the multi micro-grid concept’, Electr. Power Syst. Res., 2013, 95, pp. 292301.
    20. 20)
      • 26. Liu, W., Gu, W., Xu, Y., et al: ‘General distributed secondary control for multi-microgrids with both PQ-controlled and droop-controlled distributed generators’, IET Gener. Transm. Distrib., 2017, 11, (3), pp. 707718.
    21. 21)
      • 10. George, S., Agarwal, V.: ‘A DSP based optimal algorithm for shunt active filter under nonsinusoidal supply and unbalanced load conditions’, IEEE Trans. Power Electron., 2007, 22, (2), pp. 593601.
    22. 22)
      • 3. Yang, N., Huang, Y., Hou, D., et al: ‘Adaptive nonparametric kernel density estimation approach for joint probability density function modeling of multiple wind farms’, Energies, 2019, 12, (7), pp. 13561370.
    23. 23)
      • 7. Wang, C., Li, X., Tian, T., et al: ‘Coordinated control of passive transition from grid-connected to islanded operation for three/single-phase hybrid multimicrogrids considering speed and smoothness’, IEEE Trans. Ind. Electron., 2019, doi: 10.1109/TIE.2019.2903749, to be published.
    24. 24)
      • 16. Soto, D., Edrington, C., Balathandayuthapani, S., et al: ‘Voltage balancing of islanded microgrids using a time-domain technique’, Electr. Power Syst. Res., 2012, 84, (1), pp. 214223.
    25. 25)
      • 33. Moradi, M.H., Eskandari, M., Hosseinian, S.M.: ‘Cooperative control strategy of energy storage systems and micro sources for stabilizing microgrids in different operation modes’, Int. J. Electr. Power Energy Syst., 2016, 78, pp. 390400.
    26. 26)
      • 11. Singh, B., Solanki, J.: ‘An implementation of an adaptive control algorithm for a three-phase shunt active filter’, IEEE Trans. Ind. Electron., 2009, 56, (8), pp. 28112820.
    27. 27)
      • 12. Graovac, D., Katic, V., Rufer, A.: ‘Power quality problems compensation with universal power quality conditioning system’, IEEE Trans. Power Deliv., 2007, 22, (2), pp. 968976.
    28. 28)
      • 17. Hamzeh, M., Karimi, H., Mokhtari, H.: ‘A new control strategy for a multi-bus MV microgrid under unbalanced conditions’, IEEE Trans. Power Syst., 2012, 27, (4), pp. 22252232.
    29. 29)
      • 30. Weiss, G., Zhong, Q.-C., Green, T., et al: ‘H repetitive control of DC–AC converters in micro-grids’, IEEE Trans. Power Electron., 2004, 19, (1), pp. 219230.
    30. 30)
      • 27. Hornik, T., Zhong, Q.: ‘A current-control strategy for voltage-source inverters in microgrids based on h-infinity and repetitive control’, IEEE Trans. Power Electron., 2011, 26, (3), pp. 943952.
    31. 31)
      • 31. Kejian, S., Konstantinou, G., Jing, L., et al: ‘High performance control strategy for single-phase three-level neutral-point-clamped traction four-quadrant converters’, IET Power Electron., 2017, 10, (8), pp. 884893.
    32. 32)
      • 23. Meng, L., Zhao, X., Tang, F., et al: ‘Distributed voltage unbalance compensation in islanded microgrids by using a dynamic consensus algorithm’, IEEE Trans. Power Electron., 2016, 1, (1), pp. 827838.
    33. 33)
      • 22. Meng, L., Tang, F., Savaghebi, M., et al: ‘Tertiary control of voltage unbalance compensation for optimal power quality in islanded microgrids’, IEEE Trans. Energy Convers., 2014, 29, (4), pp. 802815.
    34. 34)
      • 5. Huang, Z., Wang, Z., Zhang, H.: ‘A diagnosis algorithm for multiple open-circuited faults of microgrid inverters based on main fault component analysis’, IEEE Trans. Energy Convers., 2018, 33, (3), pp. 925937.
    35. 35)
      • 6. Sardou, I.G., Azad-Farsani, E.: ‘Network expansion planning with microgrid aggregators under uncertainty’, IET Gener. Transm. Distrib., 2018, 12, (9), pp. 21052114.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2019.0014
Loading

Related content

content/journals/10.1049/iet-gtd.2019.0014
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading